Abstract:
A vacuum cleaner attachment generally includes a cleaning element that floats relative to a suction conduit of the vacuum cleaner attachment. The cleaning element is supported on a support structure that is movably coupled to a housing and is biased towards a floor, for example, as a result of the weight of the cleaning element support structure. The cleaning element may be permanently attached to the support structure or may be a removable or disposable pad or sheet attached to the support structure. The floating cleaning element may be supported between the suction conduit and one or more wheels of the vacuum cleaner attachment. The vacuum cleaner attachment may be removably attached to a vacuum cleaner, for example, to be used interchangeably with other surface cleaning heads.
Abstract:
A docking station for a vacuum cleaner may include a receptacle configured to engage at least a portion of the vacuum cleaner such that, in response to engaging the receptacle, a vacuum cleaner flow path extending within the vacuum cleaner is transitioned from a cleaning flow path to an evacuation flow path, a suction motor of the vacuum cleaner being configured to urge air along the vacuum cleaner flow path and a docking station dust cup configured to receive debris from a vacuum cleaner dust cup of the vacuum cleaner.
Abstract:
A surface cleaning head includes a housing having a front side and back side, a brush roll rotatably mounted to the housing within a suction conduit and having at least a portion proximate the opening of the suction conduit, a leading roller mounted to the housing in front of the brush roll, and a drive mechanism operatively coupled to the brush roll and the leading roller for driving the brush roll and the leading roller at same time. The brush roll includes an agitator body and a first bristle/flap arrangement comprising a first deformable flap extending from the agitator body and a first bristle strip and/or row of tufts extending from the agitator body and disposed adjacent to the first deformable flap. The first deformable flap is disposed at an aggressive angle and the first bristle strip and/or row of tufts is arranged at a passive angle.
Abstract:
In general, the present disclosure is directed to a hand-held surface cleaning device that includes a relatively compact form-factor to allow users to store the same in a nearby location (e.g., in a drawer, in an associated charging dock, on a table top) for easy access to perform relatively small cleaning tasks that would otherwise require retrieving a full-size vacuum from storage. A hand-held surface cleaning device consistent with aspects of the present disclosure includes a body (or body portion) with a motor, power source and dust cup disposed therein. The body portion also functions as a handgrip to allow the hand-held surface cleaning device to be operated by one hand, for example.
Abstract:
An example of a system, consistent with the present disclosure, may include a motor-battery assembly. The motor-battery assembly may include a housing defining one or more cavities, a suction motor configured to be fluidly coupled to a debris compartment of a vacuum cleaner for generating air flow through the vacuum cleaner for entraining debris, one or more batteries at least partially disposed within at least one of the one or more cavities, and a motor/battery controller at least partially disposed within at least one of the one or more cavities, the motor/battery controller configured to control power provided to the suction motor and to regulate charging and/or discharging of the one or more batteries.
Abstract:
An air treatment system is disclosed that includes a modular configuration whereby a fan module, filter module, and humidifier module may couple together to provide a plurality of air treatment solutions. In more detail, the modules can stack end-to-end in a vertical configuration. The modules may electrically couple to each other via a common electrical bus and enable a controller disposed in the fan module (or other module) to control fan flow rates, direction, and humidity. The fan module can include an articulating nozzle capable of directing airflow in virtually any direction and angle about an environment. The fan module can further include an inlet arrangement that can selectively restrict external air from entering the fan module housing when the fan module is fluidly coupled to the filter module. Thus, the fan module may generate air flow from exclusively filtered air to minimize or otherwise reduce bacterial/mold growth within the fan module housing.
Abstract:
A surface cleaning head with a leading roller may be used to facilitate capturing of debris in the air flow into a suction conduit on the underside of the surface cleaning head. The leading roller is generally positioned adjacent to and in advance of the opening of the suction conduit. The surface cleaning head may have dual agitators—a leading roller and a rotating brush roll—with the leading roller being located in front of the brush roll. The leading roller may have a smaller diameter than the brush roll and may provide a softer cleaning element. The leading roller may also have a bottom portion exposed to the flow path to the suction conduit and at least a top half that is not exposed to that flow path. The leading roller may also float relative to the surface cleaning head and/or may be adjustable relative to the brush roll.
Abstract:
In general, the present disclosure is directed to a hand-held surface cleaning device that includes a relatively compact form-factor to allow users to store the same in a nearby location (e.g., in a drawer, in an associated charging dock, on a table top) for easy access to perform relatively small cleaning tasks that would otherwise require retrieving a full-size vacuum from storage. A hand-held surface cleaning device consistent with aspects of the present disclosure includes a body (or body portion) with a motor, power source and dust cup disposed therein. The body portion also functions as a handgrip to allow the hand-held surface cleaning device to be operated by one hand, for example.
Abstract:
A surface treatment apparatus may include a first agitator, a second agitator, and a drive system configured to cause the second agitator to rotate concurrently with the first agitator, the drive system including at least a first magnetic gear and a second magnetic gear.
Abstract:
An air treatment system is disclosed that includes a modular configuration whereby a fan module, filter module, and humidifier module may couple together to provide a plurality of air treatment solutions. In more detail, the modules can stack end-to-end in a vertical configuration. The modules may electrically couple to each other via a common electrical bus and enable a controller disposed in the fan module (or other module) to control fan flow rates, direction, and humidity. The fan module can include an articulating nozzle capable of directing airflow in virtually any direction and angle about an environment. The fan module can further include an inlet arrangement that can selectively restrict external air from entering the fan module housing when the fan module is fluidly coupled to the filter module. Thus, the fan module may generate air flow from exclusively filtered air to minimize or otherwise reduce bacterial/mold growth within the fan module housing.