摘要:
Methods and apparatus to decode encoded data. One method starts and stops turbo decoding depending on channel conditions of a received pilot signal. One method may be used with Hybrid Automatic Repeat Request (H-ARQ).
摘要:
Embodiments disclosed herein relate to methods and systems for providing adaptive server selection in wireless communications. An access terminal may be configured to determine a forward link quality metric associated with each of a plurality of sectors serviced by a plurality of access points; assign credits to each sector in relation to the forward link quality metric; and change a data source control (DSC) value if the credits accumulated for a non-serving sector at a DSC change boundary is greater than a predetermined threshold, where the non-serving sector and the serving sector for the access terminal belong to different cells. The access terminal may be further configured to change a data rate control (DRC) cover in accordance with the DSC change. The use of DSC may provide an early indication of handoff, thereby allowing the service outage associated with server switching to be substantially reduced.
摘要:
A method and system for reverse link interference cancellation. One method comprises demodulating and decoding at least one signal sent from at least one access terminal and received by a first base station, sending demodulated, decoded information of the signal to a second base station, reconstructing the signal at the second base station, and subtracting the reconstructed signal from a buffer at the second base station.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
Embodiments disclosed here relate to scheduling packet transmission in a multi-carrier communication system. In an embodiment, a master scheduler having at least one processor and at least one memory operably connected to the at least one processor is adapted to execute instructions stored in the at least one memory, the instructions comprising selecting a packet with a highest packet metric from among candidate packets from one carrier of a plurality of carriers, whereby expedited forwarding flows do not have a higher metric on another carrier.
摘要:
Systems and methods for adapting a de-jitter buffer to conform to air link conditions. An air link characteristic may be detected before that characteristic begins to affect packet delivery, such as by slowing or speeding delivery delay at a subscriber station. A receiver-side de-jitter buffer, which adds delay to received packets, may adaptively adjust its size based upon the detected air link characteristic, such that the de-jitter buffer is appropriately sized for anticipated data packets before they are received at the subscriber station.
摘要:
Adaptive De-Jitter Buffer for Voice over IP (VoIP) for packet switch communications. The de-jitter buffer methods and apparatus presented avoid playback of underflows while balancing end-to-end delay. In one example, the de-jitter buffer is recalculated at the beginning of each talkspurt. In another example, talkspurt packets are compressed upon receipt of all remaining packets.
摘要:
Adaptive De-Jitter Buffer for Voice over IP (VoIP) for packet switch communications. The de-jitter buffer methods and apparatus presented avoid playback of underflows while balancing end-to-end delay. In one example, the de-jitter buffer is recalculated at the beginning of each talkspurt. In another example, talkspurt packets are compressed upon receipt of all remaining packets.