摘要:
A networked computing system is taught that may be operated as one or more provisioned servers, each of the provisioned servers including capabilities as identified by a corresponding set of specifications and attributes, according to various embodiments. Typically the specifications (or constraints) and attributes are specified with a Server Configuration File. The networked computing system may be provisioned into any combination and number of servers according to needed processing and I/O capabilities. Each of these servers may include distinct compute, storage, and networking performance. Provisioned servers may be managed similar to conventional servers, including operations such as boot and shutting down.
摘要:
Real time provisioning and management of fabric-backplane enterprise servers includes monitoring system status and configuration, displaying monitoring results, accepting user commands, and providing hardware and software management and configuration commands to the system. In one embodiment, an event is generated when a pluggable module is inserted into the system. In response to the event, the availability of the pluggable module is displayed to a system operator, and the operator enters a command to provision a server that includes the pluggable module. The server provisioning command is processed, resulting in a hardware configuration command being issued to the system, and an event indicating a status associated with processing the command is returned. The recognition of the inserted module, the display to the operator, and the processing of the server provisioning command occur in real time.
摘要:
Multi-chassis fabric-backplane enterprise servers include a plurality of chassis managed collectively to form one or more provisioned servers. A central client coordinates gathering of provisioning and management information from the chassis, and arranges for distribution of control information to the chassis. One of the chassis may perform as a host or proxy with respect to information and control communication between the client and the chassis. Server provisioning and management information and commands move throughout the chassis via an Open Shortest Path First (OSPF) protocol. Alternatively, the client may establish individual communication with a subset of the chassis, and directly communicate with chassis in the subset. Server provisioning and management information includes events generated when module status changes, such as when a module is inserted and becomes available, and when a module fails and is no longer available. Each chassis includes a switch fabric enabling communication between chassis modules.
摘要:
Virtual Network Interface Controllers (vNICs) provide for communication among modules of Enterprise Server (ES) embodiments via a switch fabric dataplane. Processes executing on compute complexes of the servers exchange data as packets or messages by interfaces made available through vNICs. The vNICs further provide for transparent communication with network and storage interfaces. vNIC provisioning capabilities include programmable bandwidth, priority scheme selection, and detailed priority control (such as round-robin weights). In some embodiments, vNICs are implemented in Virtual Input/Output Controllers (VIOCs). In another aspect, Virtual Local Area Networks (VLANs) enable access to layer-2 and selected layer-3 network functions while exchanging the packets and messages. VLAN identification is provided in each vNIC, and VLAN processing is partially performed in VIOCs implementing vNICs. The compute complexes and interfaces are typically configured as pluggable modules inserted into a backplane included in a chassis.
摘要:
A hybrid server and multi-layer switch system architecture, referred to hereinafter as the Enterprise Fabric (EF) architecture, forms the basis for a number of Enterprise Server (ES) chassis embodiments. Each ES embodiment generally includes one or more Processor Memory Modules (PMMs, each generally having one or more symmetric multiprocessor complexes), one or more Network Modules, and a System Control Module (SCM). The SCM includes a cellified switching-fabric core (SF) and a System Intelligence Module (SIM). Each PMM has one or more resident Virtual IO Controller (VIOC) adapters. Each VIOC is a specialized I/O controller that includes embedded layer-2 forwarding and filtering functions and tightly couples the PMM to the SF. Thus the layer-2 switch functionality within the ES chassis is distributed over all of the SCM, NM, and PMM modules. Through the use of VIOC/VNIC device drivers, host operating system software (Host O/S) running on the PMMs is presented with a plurality of Virtual Network Interface Cards (VNICs). In some embodiments, each VNIC behaves as a high-performance Ethernet interface at the full disposal of the Host O/S. In other embodiments, at least some of the VNICs behave as high-performance Fiber Channel Host Bus Adapters.