摘要:
A hybrid server and multi-layer switch system architecture, referred to hereinafter as the Enterprise Fabric (EF) architecture, forms the basis for a number of Enterprise Server (ES) chassis embodiments. Each ES embodiment generally includes one or more Processor Memory Modules (PMMs, each generally having one or more symmetric multiprocessor complexes), one or more Network Modules, and a System Control Module (SCM). The SCM includes a cellified switching-fabric core (SF) and a System Intelligence Module (SIM). Each PMM has one or more resident Virtual IO Controller (VIOC) adapters. Each VIOC is a specialized I/O controller that includes embedded layer-2 forwarding and filtering functions and tightly couples the PMM to the SF. Thus the layer-2 switch functionality within the ES chassis is distributed over all of the SCM, NM, and PMM modules. Through the use of VIOC/VNIC device drivers, host operating system software (Host O/S) running on the PMMs is presented with a plurality of Virtual Network Interface Cards (VNICs). In some embodiments, each VNIC behaves as a high-performance Ethernet interface at the full disposal of the Host O/S. In other embodiments, at least some of the VNICs behave as high-performance Fiber Channel Host Bus Adapters.
摘要:
A hybrid server and multi-layer switch system architecture, referred to hereinafter as the Enterprise Fabric (EF) architecture, forms the basis for a number of Enterprise Server (ES) chassis embodiments. Each ES embodiment generally includes one or more Processor Memory Modules (PMMs, each generally having one or more symmetric multiprocessor complexes), one or more Network Modules, and a System Control Module (SCM). The SCM includes a cellified switching-fabric core (SF) and a System Intelligence Module (SIM). Each PMM has one or more resident Virtual IO Controller (VIOC) adapters. Each VIOC is a specialized I/O controller that includes embedded layer-2 forwarding and filtering functions and tightly couples the PMM to the SF. Thus the layer-2 switch functionality within the ES chassis is distributed over all of the SCM, NM, and PMM modules. Through the use of VIOC/VNIC device drivers, host operating system software (Host O/S) running on the PMMs is presented with a plurality of Virtual Network Interface Cards (VNICs). In some embodiments, each VNIC behaves as a high-performance Ethernet interface at the full disposal of the Host O/S. In other embodiments, at least some of the VNICs behave as high-performance Fibre Channel Host Bus Adapters.
摘要:
Virtual Network Interface Controllers (vNICs) provide for communication among modules of Enterprise Server (ES) embodiments via a switch fabric dataplane. Processes executing on compute complexes of the servers exchange data as packets or messages by interfaces made available through vNICs. The vNICs further provide for transparent communication with network and storage interfaces. vNIC provisioning capabilities include programmable bandwidth, priority scheme selection, and detailed priority control (such as round-robin weights). In some embodiments, vNICs are implemented in Virtual Input/Output Controllers (VIOCs). In another aspect, Virtual Local Area Networks (VLANs) enable access to layer-2 and selected layer-3 network functions while exchanging the packets and messages. VLAN identification is provided in each vNIC, and VLAN processing is partially performed in VIOCs implementing vNICs. The compute complexes and interfaces are typically configured as pluggable modules inserted into a backplane included in a chassis.
摘要:
A hybrid server and multi-layer switch system architecture, referred to hereinafter as the Enterprise Fabric (EF) architecture, forms the basis for a number of Enterprise Server (ES) chassis embodiments. Each ES embodiment generally includes one or more Processor Memory Modules (PMMs, each generally having one or more symmetric multiprocessor complexes), one or more Network Modules, and a System Control Module (SCM). The SCM includes a cellified switching-fabric core (SF) and a System Intelligence Module (SIM). Each PMM has one or more resident Virtual IO Controller (VIOC) adapters. Each VIOC is a specialized I/O controller that includes embedded layer-2 forwarding and filtering functions and tightly couples the PMM to the SF. Thus the layer-2 switch functionality within the ES chassis is distributed over all of the SCM, NM, and PMM modules. Through the use of VIOC/VNIC device drivers, host operating system software (Host O/S) running on the PMMs is presented with a plurality of Virtual Network Interface Cards (VNICs). In some embodiments, each VNIC behaves as a high-performance Ethernet interface at the full disposal of the Host O/S. In other embodiments, at least some of the VNICs behave as high-performance Fiber Channel Host Bus Adapters.
摘要:
A hybrid server and multi-layer switch system architecture, referred to hereinafter as the Enterprise Fabric (EF) architecture, forms the basis for a number of Enterprise Server (ES) chassis embodiments. Each ES embodiment generally includes one or more Processor Memory Modules (PMMs, each generally having one or more symmetric multiprocessor complexes), one or more Network Modules, and a System Control Module (SCM). The SCM includes a cellified switching-fabric core (SF) and a System Intelligence Module (SIM). Each PMM has one or more resident Virtual IO Controller (VIOC) adapters. Each VIOC is a specialized I/O controller that includes embedded layer-2 forwarding and filtering functions and tightly couples the PMM to the SF. Thus the layer-2 switch functionality within the ES chassis is distributed over all of the SCM, NM, and PMM modules. Through the use of VIOC/VNIC device drivers, host operating system software (Host O/S) running on the PMMs is presented with a plurality of Virtual Network Interface Cards (VNICs). In some embodiments, each VNIC behaves as a high-performance Ethernet interface at the full disposal of the Host O/S. In other embodiments, at least some of the VNICs behave as high-performance Fibre Channel Host Bus Adapters.
摘要:
Pluggable modules communicate via a switch fabric dataplane accessible via a backplane. Various embodiments are comprised of varying numbers and arrangements of the pluggable modules in accordance with a system architecture that provides for provisioning virtual servers and clusters of servers from underlying hardware and software resources. The system architecture is a unifying solution for applications requiring a combination of computation and networking performance. Resources may be pooled, scaled, and reclaimed dynamically for new purposes as requirements change, using dynamic reconfiguration of virtual computing and communication hardware and software.
摘要:
Pluggable modules communicate via a switch fabric dataplane accessible via a backplane. Various embodiments are comprised of varying numbers and arrangements of the pluggable modules in accordance with a system architecture that provides for provisioning virtual servers and clusters of servers from underlying hardware and software resources. The system architecture is a unifying solution for applications requiring a combination of computation and networking performance. Resources may be pooled, scaled, and reclaimed dynamically for new purposes as requirements change, using dynamic reconfiguration of virtual computing and communication hardware and software.
摘要:
Pluggable modules communicate via a switch fabric dataplane accessible via a backplane. Various embodiments are comprised of varying numbers and arrangements of the pluggable modules in accordance with a system architecture that provides for provisioning virtual servers and clusters of servers from underlying hardware and software resources. The system architecture is a unifying solution for applications requiring a combination of computation and networking performance. Resources may be pooled, scaled, and reclaimed dynamically for new purposes as requirements change, using dynamic reconfiguration of virtual computing and communication hardware and software.
摘要:
Pluggable modules communicate via a switch fabric dataplane accessible via a backplane. Various embodiments are comprised of varying numbers and arrangements of the pluggable modules in accordance with a system architecture that provides for provisioning virtual servers and clusters of servers from underlying hardware and software resources. The system architecture is a unifying solution for applications requiring a combination of computation and networking performance. Resources may be pooled, scaled, and reclaimed dynamically for new purposes as requirements change, using dynamic reconfiguration of virtual computing and communication hardware and software.
摘要:
A networked computing system is taught that may be operated as one or more provisioned servers, each of the provisioned servers including capabilities as identified by a corresponding set of specifications and attributes, according to various embodiments. Typically the specifications (or constraints) and attributes are specified with a Server Configuration File. The networked computing system may be provisioned into any combination and number of servers according to needed processing and I/O capabilities. Each of these servers may include distinct compute, storage, and networking performance. Provisioned servers may be managed similar to conventional servers, including operations such as boot and shutting down.