Abstract:
A digital image capturing and processing system including an image formation and detection (IFD) subsystem having a linear image sensing array and optics providing a field of view (FOV) on the linear image sensing array. A spectral-mixing based illumination subsystem produces a first field of visible laser illumination produced from an array of visible VLDs, and a second field of invisible laser illumination produced from an array of IR laser diodes (LDs) that spatially overlap and intermix with each other so as to produce a composite planar laser illumination beam which is substantially with the FOV of the linear image sensing array. An illumination control subsystem controls the spectral mixing of visible and invisible laser illumination produced from the spectral-mixing based illumination subsystem, by adaptively controlling the relative power ratio (VIS/IR) of said fields of visible and invisible laser illumination. An image capturing and buffering subsystem captures and buffers images from the image sensing array. An automatic object detection subsystem automatically detects the an object moving through at least a portion of the FOV of the linear image sensing array, and generation a control activation signal. A control subsystem, responsive to the control activation signal, controls the operations of the subsystems within the illumination and imaging station.
Abstract:
A digital image capturing and processing system including a system housing having an imaging window; illumination and imaging stations for generating and projecting illumination and imaging planes or zones through the imaging window, and into a 3D imaging volume definable relative to the imaging window, for digital imaging an object passing through the 3D imaging volume, and generating digital linear images of the object as the object intersects the illumination and imaging planes or zones during system operation. A digital image processor processes the digital images and automatically recognizes graphical intelligence (e.g. bar code symbols, alphanumeric characters etc) graphically represented in the digital images.
Abstract:
A device for optically multiplexing a laser beam, having a glass plate construction with an input surface and an output surface, and bearing reflective and semi-reflective coatings arranged so as to optically multiplex an input laser beam entering the input surface, into multiple spatial-coherence reduced output laser beams exiting from the output surface. Through such optical multiplexing, and recombination, the coherence of the resulting laser beam is substantially reduced, as is the power of speckle pattern noise observed at an image detection array detecting an image of an object illuminated by said laser beam.
Abstract:
A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and a coplanar illumination and imaging station disposed within said system housing, for projecting a coplanar illumination and imaging plane through the imaging window into an imaging volume during object illumination and imaging operations. As the object is moved through the imaging volume, its motion is automatically detected, and signals indicative of said detected object are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible laser diodes (VLDs), simultaneously with a second field of invisible illumination from a array of infrared (IR) laser diodes (LDs). These first and second fields of illumination spatially overlap and intermix with each other and produce a composite planar illumination beam that is substantially coextensive with the FOV. During object illumination and imaging operations, the relative power ratio (VIS/IR) of these fields of visible illumination and invisible illumination are controlled as one or more linear digital images of the illuminated object are formed and detected, captured and buffered, and ultimately processed so as to read one or more 1D and/or 2D code symbols graphically represented in the digital images. In an illustrative embodiment, during object illumination and imaging operations operation, the relative power ratio (VIS/IR) is adaptively controlled to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality.
Abstract:
A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises provides, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs. These first and second fields of illumination spatially overlap and intermix with each other and are substantially coextensive with the FOV. During object illumination and imaging operations, the relative power ratio (VIS/IR) of these fields of visible illumination and invisible illumination are controlled as one or more digital images of said illuminated object are formed and detected, captured and buffered, and ultimately processed so as to read one or more 1D and/or 2D code symbols graphically represented in the digital images. During object illumination and imaging operations operation, the relative power ratio (VIS/IR) is adaptively controlled to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality.
Abstract:
A POS-centric digital imaging system for installation at a retail point of sale (POS) station having a countertop surface. The POS-centric digital imaging system includes a system housing having at least one imaging window, and providing a cashier side and a customer side for the POS-centric digital imaging system. An omni-directional digital image capturing and processing subsystem is disposed in the system housing, for generating a 3D imaging volume adjacent the imaging window. A cashier/customer terminal is integrated within the system housing, for simultaneously supporting (i) cashier product scanning/imaging and checkout operations on said cashier side, and (ii) customer payment and other services on said customer side.
Abstract:
A device for optically multiplexing a laser beam, having a glass plate construction with an input surface and an output surface, and bearing reflective and semi-reflective coatings arranged so as to optically multiplex an input laser beam entering the input surface, into multiple spatial-coherence reduced output laser beams exiting from the output surface. Through such optical multiplexing, and recombination, the coherence of the resulting laser beam is substantially reduced, as is the power of speckle pattern noise observed at an image detection array detecting an image of an object illuminated by said laser beam.
Abstract:
A laser beam generation system having an integrated coherence reduction mechanism. The system includes: a flexible circuit having a first end portion and a second end portion; a laser diode mounted on the first end portion of the flexible circuit, for producing a laser beam having a central characteristic wavelength; diode current drive circuitry for producing a diode drive current to drive the laser diode and produce said laser beam; and high frequency modulation (HFM) circuitry also mounted on the first end portion of the flexible circuit, for modulating the diode drive current at a sufficiently high frequency to cause the laser diode to produce a laser beam having a spectral side-band components about the central characteristic wavelength, and thereby reducing the coherence as well as coherence length of the laser beam.
Abstract:
A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at a POS. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs. These first and second fields of illumination spatially overlap and intermix with each other to produce a composite wide-area illumination beam that is at least substantially coextensive with the FOV. During object illumination and imaging operations, the relative power ratio (VIS/IR) of these fields of visible illumination and invisible illumination is adaptively controlled as one or more digital images of the illuminated object are formed and detected, captured and buffered, and ultimately processed so as to read one or more 1D and/or 2D code symbols graphically represented in the digital images.
Abstract:
Digital image capture and processing systems and methods for generating and projecting coplanar illumination and imaging planes and/or coextensive area-type illumination and imaging zones, through one or more imaging windows, and into a 3D imaging volume in a retail POS environments, while employing automatic object motion and/or velocity detection, real-time image analysis and other techniques to capture and processing high-quality digital images of objects passing through the 3D imaging volume, and intelligently controlling and/or managing the use of visible and invisible forms of illumination, during object illumination and imaging operations, that might otherwise annoy or disturb human operators and/or customers working and/or shopping in such retail environments.