Abstract:
This invention concerns an elastic multilayer composite, comprising an elastic film layer sandwiched between a first elastic nonwoven layer and an optional second elastic nonwoven layer, and a process for making the same. The laminate is stabilized via bonding according to either: adhesive bonding between the film and nonwoven layer(s), direct extrusion lamination of the film to one or more nonwoven layer(s), or attachment of the film to one or more of the nonwoven layers at a plurality of points via thermopoint bonding. This invention also concerns a process for manufacturing an elastic multilayer composite, comprising: bonding under neutral tension or substantially neutral tension at least one elastic film layer to at least one elastic nonwoven layer. This invention also concerns a process for manufacturing an elastic multilayer composite, comprising: bonding under differential tension or stretch at least one elastic film layer to at least one elastic nonwoven layer, where either the film or the nonwoven or both are stretched Further the invention relates to a process whereby the elastic nonwoven(s), the film, the composite or any combination is activated, especially stretch activated, to create or enhance elasticity or the touch of the nonwoven, to create pores in the elastic film, or to soften the composite.
Abstract:
This invention is directed to a coated article having an increased useful lifespan, having a wear-resistant coating comprising a vitreous matrix material and metal coated superabrasive particles distributed therein. The superabrasive particles are coated with a protective metal coating selected from zinc, aluminum, aluminum-silicon alloy, titanium, chromium, nickel, silicon, tin, antimony, copper, iron, stainless steel, silver, alloys thereof, and mixtures thereof. The wear-resistant coating comprising coated superabrasive particles may be applied to the surface of an article by at least one process selected from electroless or electrolytic electroplating process, thermal spraying, and brazing.