Abstract:
A data encoding/decoding scheme includes a plurality of bar code symbols each carrying a portion of the data in which improved error correction capabilities are incorporated. According to one aspect, once data codewords have been derived to form the symbols, a first set of data correction elements are derived from a first field, then a second set of error correction elements are derived from the data elements and the first set of error correction elements using a second, wider field.
Abstract:
A electro-optical memory includes a substrate on which is printed (or otherwise inscribed) a complex symbol or "label" or "bar code" of a high density two-dimensional symbology. The bar code contains component symbols or "codewords" which are placed in row and column formation, with a variable number of codewords per row, and a variable number of rows. The symbology utilizes implicit bar code encoding scheme for implicit encoding the number of rows and the number of columns of codewords, as well as a predetermined amount of error correction. The symbology is capable of supporting a fixed number of bar code variants, with each variant having a predetermined number of rows and columns of codewords, and a predetermined error correction capability. For some codewords the implicit encoding scheme is combined with a gray coding scheme to reduce the inter-row codeword crosstalk. Systems are used for printing and decoding the bar codes of the invented symbology in applications where improved storage density and tight real estate requirements are of utmost importance. A memory may be used in conjunction with a scanner and a suitable control system in a number of applications, e.g., robotics operations or automated object searching.
Abstract:
A sealing glass composition for providing a glass seal in an electrochemical cell is presented. The sealing glass composition includes boron oxide, aluminum oxide, barium oxide, and zirconium oxide, and the glass composition is substantially free of silicon oxide and titanium oxide. The electrochemical cell incorporating the glass seal is also provided.
Abstract:
A sealing glass composition includes from about 10 molar percent to about 30 molar percent barium oxide, from about 15 molar percent to about 30 molar percent aluminum oxide, from about 40 molar percent to about 60 molar percent boron oxide and from about 1 molar percent to about 20 molar percent yttrium oxide. Methods for preparing the sealing glass and a sodium battery cell are also provided.
Abstract:
A sealing glass composition for providing a glass seal in an electrochemical cell is presented. The sealing glass composition includes boron oxide, aluminum oxide, barium oxide, and zirconium oxide, and the glass composition is substantially free of silicon oxide and titanium oxide. The electrochemical cell incorporating the glass seal is also provided.
Abstract:
A bar code scanning system and method for reading and processing bar code symbology uses a scanning station installed above the check-out stand and a receiving station at some distance away from the scanning station. The scanning station projects light onto a surface of the check-out stand. The projected light can have a well defined border indicating where a user should place items to be scanned. Alternatively, a pattern coincident with the projected light can be projected onto the surface and which includes a target indicating where items should be placed for scanning. Light reflected by items in the target region is processed to decode optical symbology on the item and produce a signal that is representative of said sensed symbology. Information about the scanned item can be processed and displayed by the receiving station for use in, e.g., a point-of-sale transaction. The system can also be configured to capture images of a user's payment card for use in payment processing and to store images of at least selected scanned items for use in subsequent processes.
Abstract:
A data encoding/decoding scheme includes a plurality of bar code symbols each carrying a portion of the data in which improved error correction capabilities are incorporated. According to one aspect, once data codewords have been derived to form the symbols, a first set of data correction elements are derived from a first field, then a second set of error correction elements are derived from the data elements and the first set of error correction elements using a second, wider field.
Abstract:
The use of low molecular-weight or polymeric organic compounds which are present in the columnar-helical phase and have liquid-crystalline properties, as photoconductors or in electronic components, corresponding photoconductive layers, an electrophotographic recording material and a method for enhancing the photoconductivity.
Abstract:
A method of reading bar code symbols includes determining one or more parameters based upon the quantity and/or quality of the data which is being acquired, and providing the user with information concerning that parameter. The parameter may, for example, be the rate at which code words in the symbol are being read, and that information may be passed to the user by way of an LED which flashes at a rate which varies with the data acquisition rate. For a given bar code symbol being read, the rate of flashing varies with the position of the bar code reader with respect to the symbol. To improve the data acquisition rate, the user simply moves and/or rotates the bar code reader with respect to the symbol in a direction which causes the rate of flashing to increase. The invention extends to a bar code reader having means for providing an indication to a user of the relative suitability, for optimal reading of a symbol, of the current position of the reader.