Abstract:
A system includes a carriage track positioned adjacent to a rotary milking platform, a robot carriage positioned on the carriage track such that the robot carriage may move along the carriage track, and a controller. The controller determines a movement of a milking stall of the rotary milking platform from a first rotational position to a second rotational position. The controller further determines a position of the robot carriage on the carriage track corresponding to the movement of the milking stall of the rotary milking platform. The controller also communicates a position signal to a carriage actuator coupled to the robot carriage and the carriage track. The position signal causes the carriage actuator to move the robot carriage along the carriage track to the determined position in conjunction with the movement of the rotary milking platform.
Abstract:
A robotic attacher retrieves cups from the left side of an equipment area located behind a dairy livestock and attaches the cups to the teats of the dairy livestock in sequence. The sequence comprises attaching a first cup to the left front teat, a second cup to the right front teat, a third cup to the left rear teat, and a fourth cup to the right rear teat.
Abstract:
A robotic attacher retrieves cups from the right side of an equipment area located behind a dairy livestock and attaches the cups to the teats of the dairy livestock in sequence. The sequence comprises attaching a first cup to the right front teat, a second cup to the left front teat, a third cup to the right rear teat, and a fourth cup to the left rear teat.
Abstract:
In an exemplary embodiment, a system includes a milking cup, a pulsating device coupled to the milking cup, a robotic arm comprising a gripper, and a controller communicatively coupled to the robotic arm and the pulsating device. The controller is operable to instruct the gripper of the robotic arm to grip the milking cup, instruct the robotic arm to move the milking cup proximate to a teat of a dairy livestock, and instruct the robotic arm to move the milking cup towards the teat. The controller is further operable to instruct the pulsating device to apply pressure to the milking cup before attaching the milking cup to the teat and instruct the gripper of the robotic arm to release the milking cup.
Abstract:
A system includes includes a first milking box stall of a size sufficient to accommodate a first dairy livestock and a second milking box stall of a size sufficient to accommodate a second dairy livestock. The first and second milking box stalls face opposite directions. An equipment portion is located between the first milking box stall and the second milking box stall. A robotic attacher is housed in the equipment portion and configured to service both stalls at different times.
Abstract:
A system includes a first milking box stall cluster comprising a first plurality of milking box stalls and a first robotic attacher associated with the first milking box stall cluster. The first robotic attacher is positioned to service each of the first plurality of milking box stalls. The system further includes a second milking box cluster comprising a second plurality of milking box stalls. It is positioned adjacent to the first milking box stall cluster. A second robotic attacher is associated with the second milking box stall cluster and is positioned to service each of the second plurality of milking box stalls.
Abstract:
In an exemplary embodiment, a system includes a three-dimensional camera and a processor communicatively coupled to the three-dimensional camera. The processor is operable to determine a first edge of a dairy livestock, determine a second edge of the dairy livestock, determine a third edge of the dairy livestock, and determine a fourth edge of the dairy livestock.
Abstract:
A system comprises a memory operable to store first light intensity information for a first pixel of an image that includes a dairy livestock, and second light intensity information for a second pixel of the image, wherein the second pixel is adjacent to the first pixel. The system further comprises a processor communicatively coupled to the memory and operable to determine that a difference between the first light intensity information and the second light intensity information exceeds a threshold, and discard one of the first pixel or the second pixel from the image.
Abstract:
An apparatus comprises a cup holder bracket and a cup holder. The cup holder bracket comprises a hinge that allows the cup holder bracket to pivot between a substantially horizontal position when closed to a substantially vertical position when opened. The cup holder is coupled to the cup holder bracket and comprises a rimmed structure configured to hold an attachment end of a cup when the cup holder bracket is closed.
Abstract:
A robotic attacher retrieves cups from the left side of an equipment area located behind a dairy livestock and attaches the cups to the teats of the dairy livestock in sequence. The sequence comprises attaching a first cup to the left front teat, a second cup to the right front teat, a third cup to the left rear teat, and a fourth cup to the right rear teat.