Abstract:
A technique enables easy quantitative evaluation for drilling operations. A civil engineering work data processing device includes a positioning data receiving unit, a three-dimensional model estimating unit, and a drilled depth calculator. The positioning data receiving unit receives positioning data obtained by performing positioning using laser light, on a drilling rod. The three-dimensional model estimating unit estimates a three-dimensional model of the drilling rod, on the basis of the positioning data. The drilled depth calculator calculates a depth of a hole generated in a civil engineering work target by the drilling rod, on the basis of the estimated three-dimensional model.
Abstract:
The survey system includes a mobile body equipped with a scanner configured to perform scanning by a distance measuring light, a position measuring device configured to measure a position of the scanner, and a posture detecting device configured to detect a posture of the scanner, the posture detecting device includes an imaging unit configured to periodically acquire image data, a 3-axis angular velocity sensor configured to detect 3-axis posture angles of the scanner, and an arithmetic control unit, and the arithmetic control unit is configured to calculate posture information of the scanner by summing photographing-time 3-axis posture angles (SP0, SP1, SPn) of the scanner acquired in each photographing by image analysis of the image data, and 3-axis posture relative displacement angles of the scanner calculated from detection values of the 3-axis angular velocity sensor.
Abstract:
Disclosed is a path selection device for unmanned aerial vehicle, comprising: a landing position information receiving portion that receives a landing position; a vehicle body position information receiving portion that receives the current position of the unmanned aerial vehicle; a scanned data receiving portion capable of receiving three-dimensional scanned data on a scanned target acquired by scanning by a laser scanner comprised in the unmanned aerial vehicle; a scan map creating portion that creates a three-dimensional map based on the three-dimensional scanned data received by the scanned data receiving portion; a no-fly place extracting portion that extracts a no-fly place forming a flight obstacle in the three-dimensional map; and a path selecting portion that selects, in the three-dimensional map, a flight path of the unmanned aerial vehicle which is from the current position to the landing position and in which the no-fly place can be avoided.
Abstract:
Detection of sunlight as noise is avoided in obtaining point clouds by using a laser scanner. A laser scanner controlling device includes a sun direction calculating unit 115, a brightness measuring unit 116, and a scan condition setting unit 118. The sun direction calculating unit 115 calculates the direction of the sun. The brightness measuring unit 116 measures the brightness of an image that contains the direction of the sun. The scan condition setting unit 118 sets a condition for restricting laser scanning in the direction of the sun when the brightness is not less than a predetermined threshold value.