Abstract:
In some embodiments, the present disclosure relates to an image sensor, including a first photodiode and a second photodiode disposed in a semiconductor substrate. A floating diffusion node is disposed along a frontside of the semiconductor substrate and between the first and second photodiodes. A partial backside deep trench isolation (BDTI) structure is disposed within the semiconductor substrate and between the first and second photodiodes. The partial BDTI extends from a backside of the semiconductor substrate and is spaced from the floating diffusion node. A full BDTI structure extends from the backside of the semiconductor substrate to the frontside of the semiconductor substrate.
Abstract:
In some embodiments, the present disclosure relates to an image sensor, including a first photodiode and a second photodiode disposed in a semiconductor substrate. A floating diffusion node is disposed along a frontside of the semiconductor substrate and between the first and second photodiodes. A partial backside deep trench isolation (BDTI) structure is disposed within the semiconductor substrate and between the first and second photodiodes. The partial BDTI extends from a backside of the semiconductor substrate and is spaced from the floating diffusion node. A full BDTI structure extends from the backside of the semiconductor substrate to the frontside of the semiconductor substrate.
Abstract:
The present disclosure relates to a semiconductor device having a lateral resonance structure to coherently reflect light toward the image sensor. The semiconductor device includes an image sensing element arranged within a substrate. A radiation absorption region is arranged within the substrate and above the image sensor, and contains an array of protrusions having a characteristic dimension and an outer border. A resonant structure containing a plurality of deep trench isolation (DTI) structures is disposed on opposing sides of the image sensing element. The (DTI) structures surround the outer border of the array of protrusions. An inner surface of the DTI structure is laterally spaced apart from the outer border of the array of protrusions by a reflective length based on the characteristic dimension of the array of protrusions, thus affecting coherent reflection of light back toward the image sensor.
Abstract:
A pixel sensor device is disclosed. The device includes a shallow trench isolation structure, a well region and a backside isolation structure. The well region and diode region is adjacent to the shallow trench isolation structure. The backside isolation structure is self-aligned with and arranged over the shallow trench isolation structure. The backside isolation structure is adjacent to the diode region.
Abstract:
A pixel sensor device is disclosed. The device includes a shallow trench isolation structure, a well region and a backside isolation structure. The well region and diode region is adjacent to the shallow trench isolation structure. The backside isolation structure is self-aligned with and arranged over the shallow trench isolation structure. The backside isolation structure is adjacent to the diode region.An immersion lithographic arrangement is disclosed that compensates for immersion tool drift.
Abstract:
A method for manufacturing a back-side illumination (BSI) complementary metal-oxide-semiconductor (CMOS) image sensor with a vertical transfer gate structure for improved quantum efficiency (QE) and global shutter efficiency (GSE) is provided. A sacrificial dielectric layer is formed over a semiconductor region. A first etch is performed into the sacrificial dielectric layer to form an opening exposing a photodetector in the semiconductor region. A semiconductor column is formed in the opening. A floating diffusion region (FDR) is formed over the semiconductor column and the sacrificial dielectric layer. A second etch is performed into the sacrificial dielectric layer to remove the sacrificial dielectric layer, and to form a lateral recess between the FDR and the photodetector. A gate is formed filling the lateral recess and laterally spaced from the semiconductor column by a gate dielectric layer. The BSI CMOS image sensor resulting from the method is also provided.