摘要:
Techniques for transmitting data from multiple transmit antennas using space orthogonal resource transmit diversity (SORTD) are described. For the SORTD scheme, a different orthogonal resource may be assigned to each transmit antenna. Data may be sent from the multiple transmit antennas using multiple orthogonal resources. In one design, a UE may process at least one information bit (e.g., with joint or independent coding) to obtain first and second sets of at least one modulation symbol. The UE may process the first set of modulation symbol(s) for transmission from the first transmit antenna using a first orthogonal resource. The UE may process the second set of modulation symbol(s) for transmission from the second transmit antenna using a second orthogonal resource. Each orthogonal resource may include a different reference signal sequence or a different set of reference signal sequence and orthogonal sequence.
摘要:
Systems and methodologies are described that facilitate cycling through precoders for transmitting wireless network communications in a time domain. The precoders can be cycled according to a precoder sequence for each data symbol transmission. When the last precoder is selected the cycle can begin again, a new precoder sequence can be received or defined, and/or the like. A precoder sequence related to a subset of precoders present in a wireless device can be defined sequentially, cyclically shifted according to an identifier or one or more communications parameters, randomly, pseudo-randomly according to an identifier or one or more communications parameters, and/or the like. In addition, the precoder sequence can be utilized to select a precoder for one or more retransmissions. Such cycling of precoders can increase transmit diversity.
摘要:
Techniques for assigning acknowledgement (ACK) resource to a user equipment (UE) in a wireless communication system are described. In one design, a first parameter indicative of radio resources (e.g., the lowest index of at least one physical resource block) allocated to the UE for data transmission may be obtained. A second parameter indicative of another resource (e.g., a cyclic shift of a reference signal sequence) assigned to the UE for data transmission may also be obtained. The first and/or second parameter may be restricted, and each restricted parameter may be limited to a set of allowed values among all available values for the parameter. ACK resource assigned to the UE for data transmission may be determined based on the first and second parameters. In one design, sequential first parameter values may be mapped to sequential ACK resources indices. In another design, mirror mapping with different mapping directions may be used for different allowed values of the second parameter.
摘要:
Certain aspects of the present disclosure relate to a technique for enabling transmission of sounding reference signals for uplink and downlink scheduling.
摘要:
Systems and methodologies are described that facilitate cycling through precoders for transmitting wireless network communications in a time domain. The precoders can be cycled according to a precoder sequence for each data symbol transmission. When the last precoder is selected the cycle can begin again, a new precoder sequence can be received or defined, and/or the like. A precoder sequence related to a subset of precoders present in a wireless device can be defined sequentially, cyclically shifted according to an identifier or one or more communications parameters, randomly, pseudo-randomly according to an identifier or one or more communications parameters, and/or the like. In addition, the precoder sequence can be utilized to select a precoder for one or more retransmissions. Such cycling of precoders can increase transmit diversity.
摘要:
A method for enhancing a sounding reference signal (SRS) in a non-root wireless communication device is disclosed. The method determines that all SRS transmissions for the wireless communication device are to occur in an uplink pilot time slot (UpPTS) portion of a transition subframe. The method also determines whether available uplink bandwidth for the UpPTS portion is greater than available uplink bandwidth for a normal uplink subframe. A current SRS is transmitted using the available uplink bandwidth for UpPTS portion when the available uplink bandwidth for the UpPTS portion is greater than available uplink bandwidth for the normal uplink subframe.
摘要:
In a Time Division Duplex (TDD) system, downlink and uplink communications share the same bandwidth but occupy different subframes. When the downlink has more subframes than the uplink, special treatment on user equipment (UE) ACK/NACK feedback is needed. One uplink may need to ACK multiple downlink subframes. A downlink association without unnecessary ACK/NACK resources sets accounts for subframes for which ACK feedback is not desired. Examples of such subframes include: a blank subframe; an almost blank subframe where only a cell specific Reference Signal (RS) is transmitted; a Time Division Multiplex (TDM) partition in which an evolved NodeB (eNB) only transmits a Physical Downlink Shared Channel (PDSCH) or a Physical Downlink Control Channel (PDCCH) indicating Semi-persistent scheduling (SPS) at certain downlink subframes; a Downlink Pilot Timeslot (DwPTS) with a certain special subframe configuration where an eNB does not send the PDSCH and the UE is not in SPS active mode in the DwPTS; and a Multi-Media Broadcast over a Single Frequency Network (MBSFN) subframe when the UE is not in SPS active mode in the MBSFN subframe.
摘要:
Techniques for transmitting a reference signal on multiple non-contiguous clusters of resources are described. A user equipment (UE) may be scheduled for data transmission on the multiple non-contiguous clusters, and each cluster may cover a set of contiguous subcarriers. The UE may generate the reference signal based on at least one reference signal (RS) sequence using code division multiplexing (CDM) or frequency division multiplexing (FDM). In an design, the UE generates the reference signal with CDM based on a single RS sequence having a length matching the total length of the multiple non-contiguous clusters. In another design, the UE generates the reference signal with CDM based on one RS sequence for each cluster. In yet another design, the UE generates the reference signal with FDM and transmits the reference signal on a subset of all subcarriers for the multiple non-contiguous clusters.
摘要:
A reference signal is transmitted on multiple non-contiguous clusters of resources. A user equipment (UE) may be scheduled for data transmission on the multiple non-contiguous clusters, and each cluster may cover a set of contiguous subcarriers. The UE may generate the reference signal based on at least one reference signal (RS) sequence using code division multiplexing (CDM) or frequency division multiplexing (FDM). In a design, the UE generates the reference signal with CDM based on a single RS sequence having a length matching the total length of the multiple non-contiguous clusters. In another design, the UE generates the reference signal with CDM based on one RS sequence for each cluster. In yet another design, the UE generates the reference signal with FDM and transmits the reference signal on a subset of all subcarriers for the multiple non-contiguous clusters.
摘要:
In a Time Division Duplex (TDD) system, downlink and uplink communications share the same bandwidth but occupy different subframes. When the downlink has more subframes than the uplink, special treatment on user equipment (UE) ACK/NACK feedback is needed. One uplink may need to ACK multiple downlink subframes. A downlink association without unnecessary ACK/NACK resources sets accounts for subframes for which ACK feedback is not desired. Examples of such subframes include: a blank subframe; an almost blank subframe where only a cell specific Reference Signal (RS) is transmitted; a Time Division Multiplex (TDM) partition in which an evolved NodeB (eNB) only transmits a Physical Downlink Shared Channel (PDSCH) or a Physical Downlink Control Channel (PDCCH) indicating Semi-persistent scheduling (SPS) at certain downlink subframes; a Downlink Pilot Timeslot (DwPTS) with a certain special subframe configuration where an eNB does not send the PDSCH and the UE is not in SPS active mode in the DwPTS; and a Multi-Media Broadcast over a Single Frequency Network (MBSFN) subframe when the UE is not in SPS active mode in the MBSFN subframe.