Abstract:
Self-compensating, quasi-homeotropic liquid crystal devices (100, 200, 300, 400) overcome the contrast reducing effects of smaller pretilt angles. The devices exhibit extremely high contrast ratio but at the same time suppress fringe field-induced disclination lines in high pixel density and small pixel size quasi-homeotropic displays. The surface pretilt (520, 540) and cell twist (570) angles are set at values that, in combination, contribute to establishing a cuspate singularity in the contrast ratio for normally incident light in response to a drive signal switching the liquid crystal device to the OFF director field state that provides nearly 0% optical efficiency. The OFF director field state corresponds to a subthreshold drive level that provides for the liquid crystal device self-compensation for in plane optical retardation. Setting the cell gap (“d”) to provide substantially 100% optical efficiency in response to a value of the drive signal switching the liquid crystal device to the ON director field state achieves optimal dynamic range for the liquid crystal device.
Abstract:
Method and apparatus for providing gray level addressing for passive liquid crystal display (LCD) panels having overlapping row and column electrodes defining pixels are disclosed. Depending upon whether the rows are being addressed by "standard" or "Swift" addressing, the signals for applying to the column electrodes are determined by different calculations, in all of which modes the amplitudes of the column signals are related to the gray level desired to be displayed by the individual pixels. For a split interval system, column signals of appropriate amplitude and polarity are applied during different subintervals of a characteristic time interval of the display panel depending upon the method of addressing the rows. In the full interval mode, the column signals applied over a full time interval are based on the desired gray level of all the pixels in the column, adjusted to provide the proper rms voltage across all the pixels so that they display the desired gray levels. The adjustment can be spread across multiple addressing intervals and can be added into the column signal when rows are selected or can be applied to the column electrode when no row is selected.
Abstract:
An addressing method and apparatus addresses faster responding liquid crystal display panels (LCDs) so that video rate, high information content LCDs having time constants on the order of 50 ms or less are perceived as having improved contrast by limiting peak voltage levels across the pixels. In a preferred embodiment, a first set of LCD electrodes is continuously driven with signals each comprising a train of pulses that are periodic in time, have a common period T, are independent of the information to be displayed, and are preferably orthonormal. Plural column signals are generated from the collective information states of the pixels defined by the overlap with a second electrode pattern. Each column signal is proportional to the sum, obtained by considering each pixel in the column, of the exclusive-or (XOR) products of the logic level of the amplitude of each row signal times the logic level of the information state of the pixel corresponding to that row. Hardware implementation comprises an external video source, a controller that receives and formats video data and timing information, a storage device that stores display data, a row signal generator, a column signal generator, and at least one LCD panel. Alternative embodiments provide circuits to reduce the number of column voltage levels required to generate a displayed image.
Abstract:
Method and apparatus for providing gray level addressing for passive liquid crystal display (LCD) panels having overlapping row and column electrodes defining pixels are disclosed. Depending upon whether the rows are being addressed by "standard" or "Swift" addressing, the signals for applying to the column electrodes are determined by different calculations, in all of which modes the amplitudes of the column signals are related to the gray level desired to be displayed by the individual pixels. For a split interval system, column signals of appropriate amplitude and polarity are applied during different subintervals of a characteristic time interval of the display panel depending upon the method of addressing the rows. In the full interval mode, the column signals applied over a full time interval are based on the desired gray level of all the pixels in the column, adjusted to provide the proper rms voltage across all the pixels so that they display the desired gray levels.
Abstract:
An optical notch filter component in a color LCD display comprises an electronically controllable variable retarder interposed between circularly polarizing elements. Entering light in a particular spectral region is circularly polarized by a first of the circularly polarizing elements, and selectively retarded by zero or a half wavelength by the retarder so as to controllably yield right or left handed circular polarization. The second circular polarizer transmits only one of the circular polarizations of the light. By controlling the circular polarization of the light with the retarder, the light is either transmitted or attenuated. More uniform stopband attenuation is provided when the optical notch filter component comprises oppositely handed circular polarizing elements and a variable retarder which applies zero retardation in one of its states. A direct view display system substantially without parallax effects is formed from a stacked assembly of the notch filter components with thin substrate construction. Higher contrast is provided by doubly analyzing each color band.
Abstract:
The optical response of the pixels of many flat panel display devices, such as liquid crystal displays (2), depends upon the spectral components, as well as the rms value, of the pixel voltage waveform during a frame period. Because each row and column electrode (10 and 11) addresses multiple pixels (14), the spectral voltage components of the voltage across any pixel during a frame period will depend upon the optical state of other pixels in the same column (11). This crosstalk phenomena can be greatly reduced by modifying the addressing signals. One method of modifying the addressing signals is to modulate them so that the spectral components of all pixel voltage waveforms fall primarily in a frequency band (54) in which the optical response is nearly independent of the frequency. Another method is to analyze (220) the spectral components of the pixel voltage waveform over a frame period before it is displayed and adjust (222) the amplitude of the addressing signals to compensate for the frequency dependence of the optical response. When using a gray scale addressing method involving an adjustment factor, such as one based upon virtual pixels (266), the value of each virtual information element (270) is multiplied by a correction factor to compensate for the different frequency components associated with the virtual row.
Abstract:
A process for the manufacture of an electrooptical display device including a circuit board and a liquid crystal display cell mounted on the circuit board, including forming a circuit board having at least one light conducting region; disposing the liquid crystal display cell adjacent the light conducting region of the circuit board; locating at least one light emitting element in the circuit board for illuminating the light conducting region; and attaching a semi-transparent reflector to the liquid crystal cell; wherein at least part of the circuit board is manufactured by combining a reflecting layer, which is produced by the deposition of a reflective material on a substrate or on one side of a mesh, with a light diffusing substance, by embedding these two materials together in a transparent polyester or epoxy resin.
Abstract:
A novel light scattering reflector and methods of making and using it are disclosed. The reflector, which can advantageously be used in conjunction with liquid crystal displays, includes a layer carrier formed of glass or rigid PVC foil. The layer carrier is roughened by sandblasting, impressing with a grooved die, or by other techniques to provide an irregular surface. A reflective metal coating is subsequently evaporated onto the roughened surface to complete the reflector structure. Auxiliary materials may also be coated onto the layer carrier to improve the characteristics of the device.
Abstract:
An improved apparatus is disclosed for producing and modulating monochromatic light and is characterized by a bright, high contrast display surface. The apparatus includes a linear polarizer positioned between a light source and a liquid crystal cell, and utilizes, as a reflector, a substance with a helical structure. A circular polarizer is positioned between the liquid crystal cell and the reflector.