摘要:
An exposure apparatus illuminates a pattern with an energy beam and transfers the pattern onto a substrate via a projection optical system. The exposure apparatus includes a substrate stage on which the substrate is mounted and that moves within a two-dimensional plane holding the substrate. A supply mechanism supplies liquid to a space between the projection optical system and the substrate on the substrate stage. A recovery mechanism recovers the liquid and an auxiliary recovery mechanism recovers the liquid which could not be recovered by the recovery mechanism.
摘要:
In an exposure apparatus, an exposure of a substrate (P) is carried out by filling at least a portion of the space between a projection optical system (PL) and the substrate (P) with a liquid (50) and projecting the image of a pattern onto the substrate (P) via the projection optical system (PL). An optical element (60) and a barrel (PK), which are in contact with the liquid (50) when the substrate (P) is moved, are surface-treated for adjusting the affinity with the liquid (50). Consequently, generation of bubbles in the liquid between the projection optical system and the substrate is suppressed and the liquid is always retained between the projection optical system and the substrate, thereby creating a good immersion state.
摘要:
In subroutine 201 and step 205, a best image-forming plane of a projection optical system and an offset component of a multipoint AF system are detected as calibration information. During measurement of a wafer alignment mark by an alignment system in step 215, the multipoint AF system detects information related to a surface shape of a surface subject to exposure of a wafer (Z map). In step 219, a Z position order profile regarding position order (Z, θx, θy) related to autofocus leveling control is made, along with an XY position order profile of a wafer stage during scanning exposure, and in step 221, scanning exposure is performed while performing open control based on the position order.
摘要:
An exposure apparatus illuminates a pattern with an energy beam and transfers the pattern onto a substrate via a projection optical system. The exposure apparatus includes a substrate stage on which the substrate is mounted and that moves within a two-dimensional plane holding the substrate. In addition, a supply mechanism supplies liquid to locally fill a space between the projection optical system and the substrate on the substrate stage with the liquid, and a recovery mechanism recovers the liquid. A plate is provided in at least a part of the periphery of a mounted area of the substrate on the substrate stage. The plate has a surface arranged at substantially the same height as a surface of the substrate mounted on the substrate stage.
摘要:
An exposure apparatus (EX) exposes a substrate (P) by projecting an image of a pattern on the substrate (P) via a projection optical system (PL) and a liquid (1). The exposure device (EX) has a liquid supply mechanism (10) which supplies the liquid (1) between the projection optical system (PL) and the substrate (P). The liquid feeding mechanism (10) stops the supply of the liquid (1) when abnormality is detected. This suppresses influence to devices and members in the periphery of the substrate caused by leakage of the liquid forming a liquid immersion area, thereby realizing satisfactory exposure processing.
摘要:
Alignment is performed with a high degree of accuracy by detecting an offset in the Z position of a wafer mark. A focal position detecting system of a multipoint type is provided which irradiates spot beams on a plurality of measurement points substantially equally distributed on the exposure field of an projection optical system and detects the heights or levels of the irradiated positions. An alignment illumination beam for detecting the position of the wafer mark is irradiated as a slit beam from an alignment sensor, and the spot beams are set so as to be overlaid with the irradiated position of the slit beam. A sample shot where the measured value of a level at the irradiated position of the spot beam exceeds an allowable range of the measured value of a level at another measurement point is excluded from alignment data, and the coordinate positions of each shot area on a wafer are calculated by an EGA method.
摘要:
A projection exposure apparatus employs light in two different wavelength bands for exposure of a photosensitive substrate and for alignment of the substrate with a mask, respectively. The mask has a window through which alignment light is passed to an alignment mark on the substrate and has a shield for preventing illumination of the alignment mark by exposure light. In one embodiment the position of the shield relative to the window is determined by magnification chromatic aberration of a projection optical system with regard to the alignment light. In another embodiment the path of the alignment light through the window is inclined relative to a line perpendicular to the mask and passes through a pupil of the projection optical system at a point deviated from the center of the pupil. In another embodiment a mark on the mask and a mark on the substrate are illuminated with light beams incident on the marks from different directions and forming interference fringes to provide optical information that is utilized to align the mask and the substrate.
摘要:
In an alignment apparatus for aligning a mask and a photosensitive substrate (a semiconductor wafer or glass plate applied with a photoresist), and which is suitably used in a projection exposure apparatus (a stepper or aligner), a proximity exposure apparatus, or the like used in a lithography process in the manufacture of a semiconductor element or a liquid crystal display element, two first beams and two second beams differing from the first beams may be radiated on a diffraction grating-like mask mark and a diffraction grating-like substrate mark, respectively, with the two second beams passing through a transparent region adjacent to the mask mark. By detecting diffracted light components of the two first beams and detecting diffracted light components of the two second beams, a relative position shift between the mask and the substrate can be determined. The alignment apparatus advantageously can reduce mixing of alignment light from a mask and alignment light from a wafer (substrate) to a minimum degree, or can sufficiently separate signals corresponding to these light components in a signal processing stage even when mixing inevitably occurs.
摘要:
A positioning method involving the following steps is disclosed. Measured are coordinates positions of at least three preselected exposure areas on a static coordinate system among a plurality of exposure areas two-dimensionally formed in accordance with predetermined array coordinates on a photosensitive substrate. Calculative array coordinates of the plurality of exposure areas on the static coordinate system are calculated by using a plurality of first parameters calculated by statistically calculating the plurality of measured coordinate positions. Then, the photosensitive substrate is positioned in an exposure position while being moved in accordance with the calculative array coordinates thus calculated. Specific marks formed on a mask are thus exposed on each of a plurality of predetermined positions on the photosensitive substrate. Measured further are coordinate positions of latent images of at least three specific marks on the static coordinate system among images (latent images) of a plurality of specific marks exposed. The plurality of these measured coordinate positions are statistically calculated, thereby calculating a plurality of second parameters used for obtaining coordinate positions of each of the plurality of specific marks (latent images) on the static coordinate system. Next, each of the plurality of exposure areas on the photosensitive substrate is aligned with an exposure position in accordance with a deviation between the parameter representing an array offset among the plurality of first parameters and the parameter representing an array offset among the plurality of second parameters. Besides, particularly the specific marks of the mask are exposed within a non-exposure domain (where no base pattern is formed) in the vicinity of the outer periphery of the photosensitive substrate.
摘要:
A method for inspecting distortion characteristics of a projection optical system to be inspected by arranging a mask formed with measurement patterns at a plurality of predetermined positions on the object surface side of the projection optical system, transferring projected images of the plurality of measurement patterns onto a photosensitive substrate arranged on the image surface side of the projection optical system, and detecting transfer images of the measurement-patterns, includes:the step of exposing a mask, on which pairs of first and second measurement patterns are arranged adjacent to each other to be separated by a predetermined interval .DELTA.T in one direction at positions on the mask corresponding to a plurality of points at which distortion amounts are to be inspected in a projection view field of the projection optical system, onto the photosensitive substrate via the projection optical system;the step of exposing the mask onto the photosensitive substrate via the projection optical system after the mask and the photosensitive substrate are moved relative to each other by an amount determined by the interval .DELTA.T with respect to the state in the preceding step;the step of measuring relative displacements between overlapping images of the first and second measurement patterns at different image height points in the projection view field of the projection optical system; andthe step of calculating a value obtained by sequentially accumulating the measured relative displacements in units of image height values as a distortion amount at the corresponding image height point.