Abstract:
A method of coupling or decoupling a tool of a rotary-drive sub-assembly and a tool retainer of the rotary-drive sub-assembly includes rotationally anchoring the tool to a first tool-change member, rotatably coupled to a base, by engaging a tool-change-engagement portion of the tool with a first tool-engagement portion of the first tool-change member. The method also includes causing relative rotation between the tool and the tool retainer.
Abstract:
A system for printing an image includes a robot, a printhead, a laser device, and a reference line sensor. The robot has at least one arm. The printhead is mounted to the arm and is movable by the arm over a surface along a rastering path while printing a new image slice over the surface. The laser device is configured to etch, during printing of the new image slice, a reference line into either the new image slice or into a basecoat at a location adjacent to the new image slice. The reference line sensor is configured to sense the reference line of an existing image slice and transmit a signal to the robot causing the adjustment of the printhead in a manner such that a side edge of the new image slice is aligned with the side edge of the existing image slice.
Abstract:
A robotic end effector quick change coupling apparatus employs a drive motor assembly having a center drive interface. A coupling component having a magnetic element extends from the drive motor assembly concentric with the center drive interface. An end effector tool has a drive connection adapted to removably receive the center drive interface. A mating coupling component having a mating magnetic element extends from the end effector tool concentric with the drive connection. The magnetic element and mating magnetic element are separably engaged by mutual magnetic attraction to couple the end effector to the drive motor assembly.
Abstract:
A system for printing an image on a surface includes a robot, a printhead having a reference line printing mechanism, and a reference line sensor. The robot has at least one arm. The printhead is mounted to the arm and is movable by the arm over a surface along a rastering path while printing a new image slice on the surface. The reference line printing mechanism is configured to print a reference line on the surface when printing the new image slice. The reference line sensor is configured to sense the reference line of an existing image slice and transmit a signal to the robot causing the arm to adjust the printhead in a manner such that a side edge of the new image slice is aligned with the side edge of the existing image slice.
Abstract:
A pressure bulkhead assembly support tool configured to hold a pressure bulkhead system is presented. The pressure bulkhead assembly support tool comprises a segmented frame having a substantially circular path. A plurality of circumferential force assemblies restrains the pressure bulkhead system such that a circumferential surface of the pressure bulkhead system with a nominal shape is formed. A plurality of alignment probes holds and positions the pressure bulkhead system relative to the segmented frame.
Abstract:
A method and apparatus for supplying cables to robots at non-static locations. A work platform for supporting one or more humans is positioned above a base platform for supporting one or more are robots independently of the work platform. A cable carrier system for providing cables to the robots is positioned underneath the work platform and above the base platform.
Abstract:
A method and apparatus for supplying cables to robots at non-static locations. A base platform is provided, and a work platform is positioned above the base platform for supporting one or more humans. One or more are robots supported on the base platform independently of the work platform. A cable carrier system is positioned above the base platform and underneath the work platform for providing cables to the robots.
Abstract:
A method of threadably coupling a first fastener with a second fastener using a rotary drive including a tool. The method includes rotationally anchoring the second fastener relative to the tool by co-axially urging a fastener-engagement portion of the tool against the second fastener and rotating the tool relative to the second fastener using a socket of the rotary drive until the fastener-engagement portion of the tool mates with a receiving portion of the second fastener, receiving the first fastener within the socket of the rotary drive co-axially with the fastener-engagement portion of the tool, and rotating the first fastener with the socket of the rotary drive relative to a housing of the rotary drive to cause the first fastener to threadably engage the second fastener.
Abstract:
A system for printing an image includes a robot, a printhead, a laser device, and a reference line sensor. The robot has at least one arm. The printhead is mounted to the arm and is movable by the arm over a surface along a rastering path while printing a new image slice over the surface. The laser device is configured to etch, during printing of the new image slice, a reference line into either the new image slice or into a basecoat at a location adjacent to the new image slice. The reference line sensor is configured to sense the reference line of an existing image slice and transmit a signal to the robot causing the adjustment of the printhead in a manner such that a side edge of the new image slice is aligned with the side edge of the existing image slice.
Abstract:
A method and apparatus for supporting collaborative robots and humans in a narrowing work envelope. A base platform is provided, and a work platform is positioned above the base platform for supporting one or more humans, wherein the work platform is narrower than the base platform, and the work platform is positioned relative to the base platform to provide areas for positioning one or more robots on one or more sides of the work platform. The robots are supported on the base platform independently of the work platform, so that movement of the work platform does not affect the robots' positions.