Abstract:
A nozzle guide is provided for a combustor of a gas turbine engine. The nozzle guide includes an annular structure including a plurality of cooling holes, a guide plate including a plurality of openings on an outer periphery of the guide plate, and a plurality of cooling passages within the annular structure to provide air flow from the plurality of cooling holes to the plurality of openings.
Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a combustor wall with a shell and a heat shield. The combustor wall defines a quench aperture therethrough. The combustor wall also defines a cavity between the shell and the heat shield. The shell defines a first aperture through which air is directed into the cavity. The heat shield includes a rail that at least partially defines a second aperture configured to direct at least some of the air within the cavity out of the combustor wall and towards the quench aperture.
Abstract:
A structure is provided for a turbine engine. The structure includes a shell with a first surface, and a heat shield with a textured second surface and a textured third surface. The texture of a portion of the second surface is different than the texture of a portion of the third surface. The first surface and the second surface define a first cooling cavity between the shell and the heat shield. The first surface and the third surface define a second cooling cavity between the shell and the heat shield.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a body portion and a cooling scheme disposed inside the body portion, the cooling scheme including a vascular engineered lattice structure and a heat transfer device adjacent to the vascular engineered lattice structure.
Abstract:
A wall assembly for a combustor of a gas turbine engine is provided. The wall assembly includes a support shell with a contoured region to define at least one convergent passage between the support shell and a multiple of liner panels. A method of cooling a wall assembly for a combustor of a gas turbine engine is also provided. This method includes a step of directing cooling air into at least one convergent passage between the support shell and a multiple of liner panels.
Abstract:
A nozzle guide is provided for a combustor of a gas turbine engine. The nozzle guide includes an annular structure including a plurality of cooling holes, a guide plate including a plurality of openings on an outer periphery of the guide plate, and a plurality of cooling passages within the annular structure to provide air flow from the plurality of cooling holes to the plurality of openings.
Abstract:
A heat shield for a combustor of a gas turbine engine includes a first edge with a first set of cantilevered members and a second edge with a second set of cantilevered members.
Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a combustor shell and a combustor heat shield that is attached to the shell. The heat shield includes a first panel and a second panel that sealingly engages the first panel in an overlap joint. A cooling cavity extends between the shell and the heat shield and fluidly couples a plurality of apertures in the shell with a plurality of apertures in the heat shield.
Abstract:
A multi-walled structure is provided for a turbine engine. This structure includes a shell with a textured first surface, and a heat shield with a second surface. The heat shield is attached to the shell. The first and the second surfaces vertically define a cooling cavity between the shell and the heat shield. The cooling cavity fluidly couples a plurality of cooling apertures defined in the shell with a plurality of cooling apertures defined in the heat shield.