Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a combustor wall with a shell and a heat shield. The combustor wall defines a quench aperture therethrough. The combustor wall also defines a cavity between the shell and the heat shield. The shell defines a first aperture through which air is directed into the cavity. The heat shield includes a rail that at least partially defines a second aperture configured to direct at least some of the air within the cavity out of the combustor wall and towards the quench aperture.
Abstract:
A structure is provided for a turbine engine. The structure includes a shell with a first surface, and a heat shield with a textured second surface and a textured third surface. The texture of a portion of the second surface is different than the texture of a portion of the third surface. The first surface and the second surface define a first cooling cavity between the shell and the heat shield. The first surface and the third surface define a second cooling cavity between the shell and the heat shield.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a body portion and a cooling scheme disposed inside the body portion, the cooling scheme including a vascular engineered lattice structure and a heat transfer device adjacent to the vascular engineered lattice structure.
Abstract:
A liner panel for use in a gas turbine engine. The liner panel has a hot side and a cold side. The liner panel includes a rail extending from the cold side and a multiple of studs extending from the cold side. At least one of the multiple of studs extends from, in part, the rail.
Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a combustor wall, which includes a shell, a heat shield and an annular body. The body at least partially defines a first aperture through the shell and the heat shield. The body also defines one or more second apertures through which air is directed into the first aperture and provides non-uniform cooling to the body.
Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a combustor wall including a shell and a heat shield. The combustor wall defines first and second cavities between the shell and the heat shield. The heat shield defines a first outlet and an elongated second outlet. The first outlet is fluidly coupled with the first cavity. The second outlet is fluidly coupled with the second cavity. The combustor wall defines one of the cavities with a tapered geometry.
Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a body, a shell and a heat shield panel. The panel is attached to the shell with a tapered cooling cavity between the shell and the panel. The panel defines a cooling aperture configured to direct air out of the cooling cavity to impinge against the body.
Abstract:
An assembly for a turbine engine is provided. This turbine engine assembly includes a shell and a heat shield with a cooling cavity between the shell and the heat shield. The heat shield defines a plurality of cooling apertures and an indentation in a side of the heat shield opposite the cooling cavity. The cooling apertures are fluidly coupled with the cooling cavity. The indentation is configured such that cooling air, directed from a first of the cooling apertures, at least partially circulates against the side of the heat shield.
Abstract:
An assembly is provided for a turbine engine. A combustor wall of the turbine engine assembly includes a shell, a heat shield and an annular body. The annular body extends through the combustor wall. The annular body at least partially defines a quench aperture along a centerline through the combustor wall. The annular body defines a first cooling aperture fluidly coupled between a cooling cavity and the quench aperture. The cooling cavity is between the shell and the heat shield.
Abstract:
A cooled wall for lining a combustor of a gas turbine engine includes an annular outer wall defining a radial passage extending therethrough, an inner wall spaced radially from the outer wall to define an axial channel in fluid communication with the radial passage, and a connecting wall joining the inner wall to the outer wall. A method of making the cooled wall includes providing a three-dimensional computer model of the cooled wall, depositing a uniform thickness layer of material on a substrate, using a laser or electron beam to melt or sinter the material to form a cross section, repeating the depositing and cross section steps to form the cooled wall, and heat treating the cooled wall.