Abstract:
A heat shield is disclosed. The heat shield may comprise a body having a back surface and an opposite front surface, wherein an opening in the body communicates through the front and back surfaces. The heat shield may further comprise at least one radial rail disposed on the back surface and extending radially outward from the opening for directing cooling air flow.
Abstract:
A heat shield is disclosed. The heat shield may comprise a body having a back surface and an opposite front surface, wherein an opening in the body communicates through the front and back surfaces. The heat shield may further comprise at least one radial rail disposed on the back surface and extending radially outward from the opening for directing cooling air flow.
Abstract:
A combustor panel arrangement for a gas turbine engine. The combustor panel arrangement includes a first combustor panel that has a first edge. A second combustor panel has a second edge facing the first edge. A first plurality of effusion holes extend through the first edge towards the second edge along a corresponding one of a first plurality of flow paths. A second plurality of effusion holes extend through the second edge along a corresponding one of a second plurality flow paths towards the first edge. The first plurality of flow paths and the second plurality of flow paths are non-intersecting.
Abstract:
A combustor wall is provided for a turbine engine and includes a combustor shell and a heat shield. The heat shield is attached to the shell with first and second cavities extending between the shell and the heat shield. The first cavity fluidly couples apertures defined in the shell with the second cavity. The second cavity fluidly couples the first cavity with apertures defined in the heat shield. The shell and the heat shield converge toward one another about the second cavity.
Abstract:
A swirler assembly for a gas turbine engine includes an outer annular injector which at least partially surrounds an inner injector and an air-assist atomizer upstream of said inner injector.
Abstract:
A combustor panel arrangement for a gas turbine engine. The combustor panel arrangement includes a first combustor panel that has a first edge. A second combustor panel has a second edge facing the first edge. A first plurality of effusion holes extend through the first edge towards the second edge along a corresponding one of a first plurality of flow paths. A second plurality of effusion holes extend through the second edge along a corresponding one of a second plurality flow paths towards the first edge. The first plurality of flow paths and the second plurality of flow paths are non-intersecting.
Abstract:
A liner assembly for a combustor of a gas turbine engine according to one disclosed non-limiting embodiment of the present disclosure includes a grommet with a multiple of grommet cooling passages.
Abstract:
A combustor wall is provided for a turbine engine and includes a combustor shell and a heat shield. The heat shield is attached to the shell with first and second cavities extending between the shell and the heat shield. The first cavity fluidly couples apertures defined in the shell with the second cavity. The second cavity fluidly couples the first cavity with apertures defined in the heat shield. The shell and the heat shield converge toward one another about the second cavity.
Abstract:
A bulkhead assembly for a combustor of a gas turbine engine includes a bulkhead support shell with a multiple of swirler openings. Each of the multiple of swirler openings is surrounded by a first multiple of cooling impingement passages that define an angle α with respect to a hot side of the bulkhead support shell and a second multiple of cooling impingement passages that define an angle β with respect to the hot side of the bulkhead support shell. The angle α is different than the angle β.
Abstract:
A liner assembly for a combustor of a gas turbine engine according to one disclosed non-limiting embodiment of the present disclosure includes a grommet with a multiple of grommet cooling passages.