Abstract:
A method of manufacturing a component that includes providing a core structure, casting a component about the core structure, removing a first portion of the core structure from the cast component, and leaving a second portion of the core structure in the cast component to provide a reduced cross-section in the cast component.
Abstract:
A turbine blade for a gas turbine engine having a plurality of cooling holes defined therein, the plurality of cooling holes are located in an airfoil of the turbine blade according to the coordinates of Table 1.
Abstract:
Core assemblies for manufacturing airfoils and airfoils for gas turbine engines are described. The core assemblies include a tip flag cavity core having an upstream portion, a tapering portion, and a downstream portion, with the tapering portion located between the upstream portion and the downstream portion and the downstream portion defines an exit in a formed airfoil. The upstream portion has a first radial height H1, the downstream portion has a second radial height H2 that is less than the first radial height H1, the tapering portion transitions from the first radial height H1 at an upstream end to the second radial height H2 at a downstream end, and at least one metering pedestal aperture is located within the tapering portion.
Abstract:
An airfoil includes pressure and suction side walls that extend in a chord-wise direction between leading and trailing edges. The pressure and suction side walls extend in a radial direction to provide an exterior airfoil surface. A main-body core cooling passage is arranged between the pressure and suction walls in a thickness direction and extends radially toward a platform. A skin core cooling passage is arranged in one of the pressure and suction side walls to form a hot side wall and a cold side wall. The hot side wall defines a portion of the exterior airfoil surface and the cold side wall defines a portion of the core passage. The skin core cooling passage is divided by a wall into two discrete first and second skin core cooling passages each supplied with cooling fluid from opposing sides.
Abstract:
Core assemblies for manufacturing airfoils and airfoils for gas turbine engines are described. The core assemblies include a tip flag cavity core having an upstream portion, a tapering portion, and a downstream portion, with the tapering portion located between the upstream portion and the downstream portion and the downstream portion defines an exit in a formed airfoil. The upstream portion has a first radial height H1, the downstream portion has a second radial height H2 that is less than the first radial height H1, the tapering portion transitions from the first radial height H1 at an upstream end to the second radial height H2 at a downstream end, and at least one metering pedestal aperture is located within the tapering portion.
Abstract:
A gas turbine engine component includes an airfoil that includes a trailing edge feed cavity. A baffle is located in the trailing edge feed cavity and includes a plurality of pressure side cooling openings in fluid communication with a corresponding one of a plurality of pressure side cooling passages. A plurality of suction side cooling openings are in fluid communication with a corresponding one of a plurality of suction side cooling passages.
Abstract:
Components for gas turbine engines are provided. The components include a hot external wall that is exposed to hot gaspath air when installed within a gas turbine engine, and an interior impingement wall, wherein the interior impingement wall defines a feed cavity and at least one impingement cavity is defined between the impingement wall and the external wall. The impingement wall includes a plurality of impingement holes that fluidly connect the feed cavity to the at least one impingement cavity, the external wall includes a plurality of film holes that fluidly connect the at least one impingement cavity to an exterior surface of the external wall, and wherein the only source of cooling air within the at least one impingement cavity is the feed cavity.
Abstract:
Airfoils for gas turbine engines are provided. The airfoils include an airfoil body extending between a first platform and a second platform, a first platform feed cavity defined by the first platform, a second platform exit cavity defined by the second platform, a first hybrid skin core cooling cavity passage formed within the airfoil body and fluidly connecting the first platform feed cavity to the second platform exit cavity, and at least one purge aperture formed in the second platform and fluidly connecting the second platform exit cavity to an exterior of the second platform. The airfoil body does not include any apertures fluidly connecting the first hybrid skin core cooling cavity passage to an exterior of the airfoil body.
Abstract:
An airfoil includes pressure and suction side walls that extend in a chord-wise direction between leading and trailing edges. The pressure and suction side walls extend in a radial direction to provide an exterior airfoil surface. A main-body core cooling passage is arranged between the pressure and suction walls in a thickness direction and extends radially toward a platform. A airfoil skin cooling passage is arranged in one of the pressure and suction side walls to form a hot side wall and a cold side wall. The hot side wall defines a portion of the exterior airfoil surface and the cold side wall defines a portion of the core passage. The airfoil skin cooling passage extends to a platform skin cooling passage arranged in the platform. The platform skin cooling passage resupplied by a backside of the platform.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a body, a wall extending inside of the body and a plurality of vortex promoting features arranged in a helical pattern along the wall.