Abstract:
A transport management system receives a request for a planned interruption in an optical network, and identifies transport equipment of the optical network affected by the planned interruption. The transport management system selectively sends a notification, from the network device, the identified transport equipment affected by the planned interruption, including a scheduled time of the planned interruption and a duration associated with the planned interruption, where the notification enables the notified transport equipment to buffer data to be transmitted on links affected by the planned interruption for the notified duration of the planned interruption.
Abstract:
An optical path system includes a first rectangular block that further includes multiple first fiber optic guides, arranged in a first configuration, into which are placed multiple first optical fibers, one fiber in each guide. The optical path system further includes a second rectangular block comprising multiple second fiber optic guides, arranged in a second configuration, into which are placed multiple second optical fibers, one fiber in each guide, wherein a first face of the second rectangular block abuts a first face of the first rectangular block and wherein the first block is movable relative to the second block. The optical path system also includes micro-position adjusting mechanisms configured to move the first block relative to the second block to align the multiple first optical fibers with the multiple second optical fibers.
Abstract:
One or more management systems coordinate wavelength configuration patterns of a plurality of multi-wavelength optical transport nodes in an optical network for a first transport period. The one or more management systems determine data traffic demand changes in the optical network; and coordinate wavelength configuration patterns of the plurality of multi-wavelength optical transport nodes in the optical network for a second transport period, that is subsequent to the first transport period, based on the determined data traffic demand changes.
Abstract:
An optical node includes a wavelength splitter configured to split optical signals comprising multiple optical wavelengths into separate outputs, with each of the separate outputs having a different wavelength. The optical node further includes a detector configured to detect optical signals associated with packets at each of the separate outputs, and determine a modulation applied to the optical signals at each of the separate outputs. The optical node also includes a processing unit configured to identify destination optical nodes for the packets based on the determined modulation.
Abstract:
A system comprises a transmitter including a laser configured to generate a laser beam directed at a spot on a surface, and a laser driver connected to the laser and configured to modulate input data onto the laser beam. The system may further comprise a receiver including an optical detector configured to decode received light into raw data, a signal processor configured to decode the raw data into the original input data, and telescope optics configured to receive light reflected from the spot on the surface, collimate the light and converge the light onto the optical detector.
Abstract:
An optical network is configured to optimize network resources. The optical network includes multiple optical nodes, light paths between the multiple optical nodes, and a network monitoring device. The network monitoring device monitors the optical network to identify a failure in the optical network. When the failure is a fiber failure, light paths are re-routed around the fiber failure while maintaining the required bandwidth for the optical network. When the failure is a transponder card failure within one of the multiple nodes, a floating spare card may be provisioned to service a particular light path associated with the transponder card failure. When the failure is a node failure, transponder cards in some of the multiple optical nodes are provisioned to reconfigure some of the plurality of light paths to route traffic around the failed node.
Abstract:
In some implementations, a device may transmit communication data to a transceiver via an access fiber optic cable. The device may determine that fiber sensing is to be performed for the access fiber optic cable. The device may cease transmission of the communication data for a predetermined time period. The device may generate an optical pulse after ceasing transmission of the communication data. The device may transmit the optical pulse to the transceiver via the access fiber optic cable. The device may receive, prior to expiration of the predetermined time period, a reflected signal from the access fiber optic cable based on the optical pulse. The device may analyze the reflected signal to generate sensing results. The device may perform one or more actions based on the sensing results.
Abstract:
In some implementations, a device may obtain responsivity data for segments of a fiber optic cable. The device may receive, from a sensor device, vibration data associated with the fiber optic cable, the vibration data being produced by a vibration source in or on soil associated with the fiber optic cable. The device may normalize, based on the responsivity data, the vibration data. The device may determine, based on the normalized vibration data, a distance of the vibration source from the fiber optic cable. The device may perform one or more actions based on the distance satisfying a distance threshold.
Abstract:
An optical node may include an optical switch and an optical add drop multiplexer (OADM). The optical switch may receive, via a space-division multiplexing (SDM) link that carries optical signals via multiple SDM elements, an optical signal to be switched from a first SDM element to a second SDM element. The multiple SDM elements may include multiple cores of a multi-core fiber, multiple modes of a multi-mode fiber, or multiple fibers of a fiber bundle. The optical switch may switch the optical signal from the first SDM element to the second SDM element. The OADM may add optical signals to an optical network or drop optical signals from the optical network via one or more SDM links that include the SDM link.
Abstract:
One or more management systems coordinate wavelength configuration patterns of a plurality of multi-wavelength optical transport nodes in an optical network for a first transport period. The one or more management systems determine data traffic demand changes in the optical network; and coordinate wavelength configuration patterns of the plurality of multi-wavelength optical transport nodes in the optical network for a second transport period, that is subsequent to the first transport period, based on the determined data traffic demand changes.