Abstract:
A system may receive a request to receive a particular quality of service level for traffic flow between a user device and an over-the-top application server that provides an over-the-top application service. The over-the-top application server may be outside of a service provider network. The system may determine that the user device is to receive the particular quality of service level for the over-the-top application service based on receiving the request. The system may cause the traffic flow to receive the particular quality of service level based on determining that the user device is to receive the particular quality of service level. The traffic flow may be transmitted using the service provider network. The system may determine usage information associated with the traffic flow, where the usage information identifies the user device and the particular quality of service level. The system may provide the usage information.
Abstract:
A device may receive information related to a channel. The information may indicate whether a measurement related to the channel satisfies a threshold. The threshold may be related to an availability of the channel. The device may determine an aggregation mode to use to communicate via the channel. The device may determine a set of available channels based on determining whether the measurement satisfies the threshold. The device may determine an order related to the set of available channels based on determining the set of available channels. The order may be based on the availability of the set of available channels. The device may select a channel from the set of available channels based on the order related to the set of available channels. The device may exchange communications via the channel based on selecting the channel.
Abstract:
A device may receive information identifying a first sub-frame being transmitted by a base station via a first radio frame. The first sub-frame may be reserved for providing a particular set of transmissions. The device may identify a second sub-frame, that is to be transmitted by the device via a second radio frame and that corresponds to the first sub-frame. The second sub-frame being included in a second radio frame. The device may blank the second sub-frame based on identifying the second sub-frame that corresponds to the first sub-frame. The device may transmit the second radio frame with the blanked second sub-frame.
Abstract:
A small cell device may communicate with a user device (e.g., a smartphone, a tablet computer, etc.) via a range extender device that extends the effective range of the small cell device to the user device. The small cell device, the range extender device, and the user device may communicate with one another using channels of a licensed spectrum (e.g., traditional LTE channels). The range extender device may determine channel conditions corresponding to an unlicensed spectrum (e.g., 5 Gigahertz (GHz) Spectrum) and communicate the channel conditions to the small cell device. Based on the channel conditions, the small cell device and the range extender device may select downlink-only channels of the unlicensed spectrum and cause the downlink capabilities of the channels of the unlicensed spectrum to be augmented by the downlink capabilities of the downlink-only channels of the unlicensed spectrum.
Abstract:
A base station may include logic configured to determine system throughput values for a plurality of modulation and coding schemes based on data throughput values and based on a number of user equipment (UE) devices serviced by the base station; determine a modulation and coding scheme, of the plurality of coding schemes, that is associated with a highest system throughput; and determine radio frequency (RF) conditions associated with the base station. The logic may further be configured to define a Multimedia Broadcast Multicast Service (MBMS) area based on the determined RF conditions and the selected modulation and coding scheme and provide an update to the UE devices serviced by the base station, wherein UE devices located within the defined MBMS area are sent the update using MBMS and UE devices located outside the defined MBMS area are sent the update using unicast.
Abstract:
A network device is configured to send information identifying a frequency at which an application, downloaded on a user device, is to send geographic location information to the network device. The network device is configured further to receive personal information associated with a plurality of social networking applications from the application on the user device. The network device is configured further to receive the geographic location information from the application; and send the personal information and the geographic location information to a plurality of social networking servers associated with a plurality of social networking applications.
Abstract:
A device may receive bearer information associated with radio bearers to be multiplexed to form a master bearer. The device may determine respective bandwidth amounts, for each radio bearer, to be allocated to the master bearer. The device may determine a total bandwidth to be allocated to the master bearer based on the bandwidth amounts. The device may form the master bearer, having the total bandwidth, based on multiplexing the radio bearers. The device may provide respective content streams, associated with the radio bearers, via the master bearer.
Abstract:
An approach for providing application-aware load balancing is provided. A load balancing platform at a base station receives application information specifying an application or type of service utilized by a mobile device and determines allocation of a plurality of carriers based on the received application information to provide load balancing across the plurality of carriers. The platform generates mapping information indicating a mapping of a plurality of applications to one or more of the plurality of carriers, wherein the application information includes the generated mapping information.
Abstract:
A system may receive a request to receive a particular quality of service level for traffic flow between a user device and an over-the-top application server that provides an over-the-top application service. The over-the-top application server may be outside of a service provider network. The system may determine that the user device is to receive the particular quality of service level for the over-the-top application service based on receiving the request. The system may cause the traffic flow to receive the particular quality of service level based on determining that the user device is to receive the particular quality of service level. The traffic flow may be transmitted using the service provider network. The system may determine usage information associated with the traffic flow, where the usage information identifies the user device and the particular quality of service level. The system may provide the usage information.
Abstract:
A method implemented by an outdoor broadband unit includes receiving, by a broadband home router within the outdoor broadband unit, a request for services associated with a wide area network (WAN), the request originating from a device within a local area network (LAN) associated with the broadband home router; generating, by the broadband home router and based on the request, an attention (AT) command to a Long-Term Evolution (LTE) module, within the outdoor broadband unit, the LTE module providing an air interface for the WAN; executing, by the LTE module, the AT command; receiving, by the broadband home router and from the LTE module, a return value based on the executed AT command; and sending, by the broadband home router and to the device within the LAN, a response to the request based on the return value.