Abstract:
An appliance includes a metallic outer wrapper having sidewalls, a wrapper backwall and a machine wall. At least one metallic inner liner has liner walls and a liner backwall, wherein the metallic outer wrapper and the at least one metallic inner liner are coupled together at a trim breaker to define a structural cabinet having a hermetically sealed interior cavity defined between the metallic outer wrapper and the at least one metallic inner liner. The trim breaker defines a front face of the structural cabinet. At least one trim breaker conduit extends through the wrapper and liner backwalls wherein the trim breaker conduit defines a conduit through the structural cabinet, and wherein the structural cabinet is hermetically sealed at the trim breaker conduit.
Abstract:
An appliance includes an outer wrapper and an inner liner placed within the outer wrapper and spaced apart from the outer wrapper to define an insulating space. A trim breaker extends between the inner liner and the outer wrapper to define a structural cabinet. The trim breaker defines a front face of the cabinet. The trim breaker defines a gas conduit disposed within a wall of the structural cabinet proximate the insulating space. The gas conduit is adapted to define selective communication between the insulating space and an exterior of the structural cabinet. An insulating material is disposed within the insulating space, wherein the gas conduit is substantially free of the insulating material.
Abstract:
A refrigerator includes a wall covering assembly having a top wall spaced-apart from a top wall of a liner, and a rear wall spaced-apart from a rear wall of the liner. The wall covering assembly includes a pattern of ports for providing outwardly directed cooled air to the refrigerator cabinet from a duct assembly. The duct assembly is configured to deliver cooled air through the ventilated portion of the wall covering assembly and also deliver cooled air to a front portion of the refrigerator cabinet via a downwardly directed air curtain. The air curtain disrupts the outward flow of air from the ventilated portion of the wall covering assembly before the cooled air reaches a gasket assembly disposed around the refrigerator doors. Angled venting slots disposed on the wall covering assembly direct air towards inner surfaces of the doors without disruption from the air curtain.
Abstract:
An appliance includes an outer wrapper and an inner liner placed within the outer wrapper and spaced apart from the outer wrapper to define an insulating space. A trim breaker extends between the inner liner and the outer wrapper to define a structural cabinet. The trim breaker defines a front face of the cabinet. The trim breaker defines a gas conduit disposed within a wall of the structural cabinet proximate the insulating space. The gas conduit is adapted to define selective communication between the insulating space and an exterior of the structural cabinet. An insulating material is disposed within the insulating space, wherein the gas conduit is substantially free of the insulating material.
Abstract:
An ice maker includes, among other things, an ice cube mold, an ice cube remover and a force sensor comprising a piezo dielectric elastomer (PDE). The ice cube mold has at least one cavity for receiving liquid. The ice cube remover is configured to apply a removal force to either the mold or an ice cube. The force sensor is provided on either the mold or the remover and provides an output indicative of the removal force. Upon the removal of an ice cube from the cavity, the ice cube remover applies a removal force to the mold or the ice cube to effect the removal of the ice cube from the cavity and the force sensor outputs a signal indicative of the removal force.
Abstract:
A method to control a fixed-sequence dual evaporator cooling system including providing a recurring cooling cycle cooling system wherein each recurring cooling cycle comprises first and second cooling cycles for cooling respective first and second interiors, a pump-out cycle for returning coolant to a condenser, and an idle cycle, and providing a processor to establish exceptions to the recurring cooling cycle. A step includes the processor monitoring first and second actual temperatures of the respective first and second interiors, selecting predetermined first and second control temperatures for the respective first and second interiors, and selecting a command input signal to supply to a compressor, the condenser fan, the first and second evaporator fans, and the valve of the cooling system during the recurring cooling cycle based upon the first and second actual temperatures and the predetermined first and second control temperatures to initiate the established exceptions.
Abstract:
A method to control a fixed-sequence dual evaporator cooling system including providing a recurring cooling cycle cooling system wherein each recurring cooling cycle comprises first and second cooling cycles for cooling respective first and second interiors, a pump-out cycle for returning coolant to a condenser, and an idle cycle, and providing a processor to establish exceptions to the recurring cooling cycle. A step includes the processor monitoring first and second actual temperatures of the respective first and second interiors, selecting predetermined first and second control temperatures for the respective first and second interiors, and selecting a command input signal to supply to a compressor, the condenser fan, the first and second evaporator fans, and the valve of the cooling system during the recurring cooling cycle based upon the first and second actual temperatures and the predetermined first and second control temperatures to initiate the established exceptions.
Abstract:
An appliance includes a metallic outer wrapper having sidewalls, a wrapper backwall and a machine wall. At least one metallic inner liner has liner walls and a liner backwall, wherein the metallic outer wrapper and the at least one metallic inner liner are coupled together at a trim breaker to define a structural cabinet having a hermetically sealed interior cavity defined between the metallic outer wrapper and the at least one metallic inner liner. The trim breaker defines a front face of the structural cabinet. At least one trim breaker conduit extends through the wrapper and liner backwalls wherein the trim breaker conduit defines a conduit through the structural cabinet, and wherein the structural cabinet is hermetically sealed at the trim breaker conduit.
Abstract:
An operable panel for an appliance includes a metallic outer wrapper having a perimetrical wrapper edge that partially defines a perimetrical breaker channel, an inner liner and a plurality of corner brackets disposed proximate the perimetrical wrapper edge. Each corner bracket cooperates with the perimetrical wrapper edge to fully define the perimetrical breaker channel. A trim breaker is adhered to the metallic outer wrapper and the corner brackets at the perimetrical breaker channel and having a liner channel that receives a portion of the inner liner. The trim breaker extends between the inner liner and the outer wrapper. An insulation material is disposed within an insulating cavity defined between the inner liner and the outer wrapper.
Abstract:
An appliance includes an outer wrapper and an inner liner placed within the outer wrapper and spaced apart from the outer wrapper to define an insulating space. A trim breaker extends between the inner liner and the outer wrapper to define a structural cabinet. The trim breaker defines a front face of the cabinet. The trim breaker defines a gas conduit disposed within a wall of the structural cabinet proximate the insulating space. The gas conduit is adapted to define selective communication between the insulating space and an exterior of the structural cabinet. An insulating material is disposed within the insulating space, wherein the gas conduit is substantially free of the insulating material.