Abstract:
Methods and systems for creating one or more statistical classifiers. A first set of performance parameters, corresponding to the one or more applications and the one or more computing infrastructures, is extracted from a historical data pertaining to the execution of the one or more applications on the one or more computing infrastructures. Further, a set of application-specific and a set of infrastructure-specific parameters are selected, from the first set of performance parameters, based on one or more statistical techniques. A similarity between each pair of the applications, each pair of the computing infrastructures, and each pair of possible combinations of an application and a computing infrastructure is determined. One or more statistical classifiers are created, based on the determined similarity.
Abstract:
Some embodiments are directed to a system for identifying clusters from a plurality of users using cloud services. A behavior collection module is configured to obtain user preferences for the plurality of users, and an EM module to configured estimate at least one parameter of a distance-based model by the Expectation-Maximization (EM) algorithm for various values of G (number of clusters). A selection module is configured to compute Bayesian Information Criteria (BIC) with the at least one estimated parameter obtained from the EM module for various values of G, compare BICs obtained for various values of G, select the model with the highest BIC as the best model (best model including the plurality of clusters) and use estimated latent variables of the best model to build a classifier. A characterization module is configured to classify each user into a cluster of the best model using the classifier, and to determine ranking preference of each cluster.
Abstract:
Methods and systems for sharing computational resources. A request from a first node is received for the one or more computational resources. The request comprises a service level agreement (SLA) associated with the requested one or more computational resources. The request is compared with one or more advertisements sent by at least two second nodes, other than the first node. The one or more advertisements correspond to an availability of a set of computational resources associated with each of the at least two second nodes. A portion of computational resources from the set of computational resources associated with each of the at least two second nodes is allocated to the first node, based on the comparison, such that a combination of the portion of computational resources satisfy the SLA associated with the request.
Abstract:
A method and system identifies a cloud configuration for deploying a software application. A performance of a target application and workload is characterized. A set of benchmark applications is then deployed into at least one target cloud infrastructure. The target infrastructure is characterized using the set of benchmarking applications. The performance of the target application is represented with a set of bins each corresponding to a resource subsystem of a virtual machine and a performance score that is required to deploy the target application and meet the target performance. The bins are filled with performance values for selected target virtual machines. Using the filled bins, a set of virtual machines needed to satisfy the target cloud infrastructure is determined. A recommendation is provided for the set of virtual machines to use in deploying the software application.
Abstract:
Disclosed embodiment illustrated herein methods and systems for allocating one or more tasks to at least one computing device. The method includes, in a marketplace server, receiving a beacon message from the at least one computing device. The beacon message comprises information on availability of one or more computational resources associated with the at least one computing device. A service level agreement is defined for each of the one or more tasks based on the availability of the one or more computational resources. The one or more tasks are allocated to the at least one computing device based on the service level agreement and the availability of the one or more computational resources.
Abstract:
A system and method for providing cloud performance capability estimation and supporting recommender systems by simulating bottleneck and its migration for any given complex application in a cost-efficient way are provided. To do this, first, the system and method builds an abstract performance model for an application based on the resource usage pattern of the application in an in-house test-bed (i.e., a white-box environment). Second, it computes relative performance scores of many different cloud configurations given from black-boxed clouds using a cloud metering system. Third, it applies the collected performance scores into the abstract performance model to estimate performance capabilities and potential bottleneck situations of those cloud configurations. Finally, using the model, it can support recommender systems by providing performance estimates and simulations of bottlenecks and bottleneck migrations between resource sub-systems while new resources are added or replaced.