摘要:
Provided is an information processing apparatus including a learning part performing learning of a model of an environment in which an agent performs action, using an observed value observed in the agent when the agent capable of action performs action, an action determining part determining action to be performed by the agent, based on the model, and a user instruction output part outputting instruction information representing an instruction from a user according to the instruction from the user, wherein the action determining part determines the action performed by the agent according to the instruction information when there is an instruction from the user.
摘要:
A control system, method and computer program product cooperate to assist control for an autonomous robot. The system includes a communications interface that exchanges information with the autonomous robot (22). A user interface displays a scene of location in which the autonomous robot (22) is positioned, and also receives an indication of a user selection of a user selected area within the scene. The communications interface transmits an indication of said user selected area to the autonomous robot (22) for further processing of the area by said autonomous robot (22).
摘要:
There is provided an information processing apparatus including: an appliance power consumption estimating unit estimating power consumption of each of a plurality of appliances disposed inside a large region that is divided into a plurality of regions; an appliance presence probability estimating unit estimating appliance presence probabilities that are probabilities that the respective appliances are present in the respective regions; a responsible share deciding unit deciding responsible shares that are proportions for respective people when power consumption in each region is shared among people who may be present in the large region; and a power consumption allocating unit calculating an allocated amount of power consumption of each person based on the power consumption of each of the plurality of appliances, the appliance presence probabilities, and the responsible shares.
摘要:
An HMM (Hidden Markov Model) learning device includes: a learning unit for learning a state transition probability as the function of actions that an agent can execute, with learning with HMM performed based on actions that the agent has executed, and time series information made up of an observation signal; and a storage unit for storing learning results by the learning unit as internal model data including a state-transition probability table and an observation probability table; with the learning unit calculating frequency variables used for estimation calculation of HMM state-transition and HMM observation probabilities; with the storage unit holding the frequency variables corresponding to each of state-transition probabilities and each of observation probabilities respectively, of the state-transition probability table; and with the learning unit using the frequency variables held by the storage unit to perform learning, and estimating the state-transition probability and the observation probability based on the frequency variables.
摘要:
An HMM (Hidden Markov Model) learning device includes: a learning unit for learning a state transition probability as the function of actions that an agent can execute, with learning with HMM performed based on actions that the agent has executed, and time series information made up of an observation signal; and a storage unit for storing learning results by the learning unit as internal model data including a state-transition probability table and an observation probability table; with the learning unit calculating frequency variables used for estimation calculation of HMM state-transition and HMM observation probabilities; with the storage unit holding the frequency variables corresponding to each of state-transition probabilities and each of observation probabilities respectively, of the state-transition probability table; and with the learning unit using the frequency variables held by the storage unit to perform learning, and estimating the state-transition probability and the observation probability based on the frequency variables.
摘要:
An information processing device includes: a calculating unit configured to calculate a current-state series candidate that is a state series for an agent capable of actions reaching the current state, based on a state transition probability model obtained by performing learning of the state transition probability model stipulated by a state transition probability that a state will be transitioned according to each of actions performed by an agent capable of actions, and an observation probability that a predetermined observation value will be observed from the state, using an action performed by the agent, and an observation value observed at the agent when the agent performs an action; and a determining unit configured to determine an action to be performed next by the agent using the current-state series candidate in accordance with a predetermined strategy.
摘要:
An information processing apparatus includes a storage unit configured to store a node holding dynamics; an input-weight-coefficient adjuster configured to adjust input-weight coefficients on a dimension-by-dimension basis, the input-weight coefficients being weight coefficients for individual dimensions of input data input to input units of the node, the input data being observed time-series data having a plurality of dimensions; and an output-weight-coefficient adjuster configured to adjust output-weight coefficients on a dimension-by-dimension basis, the output-weight coefficients being weight coefficients for individual dimensions of output data having a plurality of dimensions and output from output units of the node.
摘要:
A facial expression recognition system that uses a face detection apparatus realizing efficient learning and high-speed detection processing based on ensemble learning when detecting an area representing a detection target and that is robust against shifts of face position included in images and capable of highly accurate expression recognition, and a learning method for the system, are provided. When learning data to be used by the face detection apparatus by Adaboost, processing to select high-performance weak hypotheses from all weak hypotheses, then generate new weak hypotheses from these high-performance weak hypotheses on the basis of statistical characteristics, and select one weak hypothesis having the highest discrimination performance from these weak hypotheses, is repeated to sequentially generate a weak hypothesis, and a final hypothesis is thus acquired. In detection, using an abort threshold value that has been learned in advance, whether provided data can be obviously judged as a non-face is determined every time one weak hypothesis outputs the result of discrimination. If it can be judged so, processing is aborted. A predetermined Gabor filter is selected from the detected face image by an Adaboost technique, and a support vector for only a feature quantity extracted by the selected filter is learned, thus performing expression recognition.
摘要:
A robot includes a face extracting section for extracting features of a face included in an image captured by a CCD camera, and a face recognition section for recognizing the face based on a result of face extraction by the face extracting section. The face extracting section is implemented by Gabor filters that filter images using a plurality of filters that have orientation selectivity and that are associated with different frequency components. The face recognition section is implemented by a support vector machine that maps the result of face recognition to a non-linear space and that obtains a hyperplane that separates in that space to discriminate a face from a non-face. The robot is allowed to recognize a face of a user within a predetermined time under a dynamically changing environment.
摘要:
In a plane detection apparatus, a plane detection unit (3) includes a line fitting block (4) to select a group of distance data points being in one plane from distance data forming an image and extract lines from the distance data point group, and a region growing block (5) to detect one or more planar regions existing in the image from a group of all lines included in the image and extracted by the line fitting block (4). The line fitting block (4) first draws a line D1 connecting end points of the distance data point group, searches a point of interest brk whose distance to the line L1 is largest, segments the data point group by the point of interest brk when the distance is larger than a predetermined threshold, and determines a line L2 by the least-squares method when the distance is smaller than the predetermined threshold. In case there exists a larger number of data points than a predetermine number on one side of the line L2, the data point group is determined to be in a zig-zag shape, the data point group is segmented by the point of interest brk. These operations are done repeatedly. Thus, a plurality of planes robust against noises is detected simultaneously and accurately from distance data including measurement noises.