Abstract:
We propose an opposite-phase scheme for peak current reduction. The basic idea is to divide the clock buffers at each level of the clock tree into two sets: one half of the clock buffers operate at the same phase as the clock source, and the other half of the clock buffers operate at the opposite phase to the clock source. Consequently, our approach can effectively reduce the peak current of the clock tree. The method enables the opposite-phase scheme to combine with the electronic design automation (EDA) tools that are commonly used in modern industries.
Abstract:
A BIST circuit for testing both an analog-to-digital converter and a phase lock loop includes a controllable delay circuit, a NAND gate, a dividing circuit, a NOR gate and a charge/discharge circuit. The invention reduces the period of the signal under test, converts its pulse width to voltage and measures the output via an ADC. The clock jitter becomes sensitive through a delay cancellation method, thus, the accuracy is improved. The invention further comprises all testing procedure for period jitters of a PLL and static characteristics of an ADC. The test error caused by process variation can be corrected by a controllable delay circuit such that the error determination of the test result is prevented.
Abstract:
A built-in memory current test circuit to test a memory on a chip is disclosed, comprising a built-in self-test circuit and a dynamic current generation module. The built-in self-test circuit is disposed on the chip to receive and process a test signal and generate a control signal to control operation of the memory and a current control code. The dynamic current generation module, also disposed on the chip, produces a test current into the memory based on the current control code. The current switch time is reduced in the built-in memory current test circuit, and an integrated test combining functional and stress tests can thus be performed.