Abstract:
A method for neutral pixel detection using color space feature vectors wherein one color space coordinate represents lightness is provided. The method includes the following steps: a) receiving an input image represented in a first color space; b) converting the input image to a second color space wherein one coordinate represents lightness; c) selecting a pixel in the second color space representation to be classified; d) computing second color space feature vectors associated with the selected pixel; and e) classifying the selected pixel between neutral and color classes based on the values computed for the second color space feature vectors. Typically, the input image is processed using a smoothing filter to create a smoothed input image prior to the conversion to the second color space. The method can be adapted to page processing or strip processing schemes with respect to the input image.
Abstract:
An adaptive image enhancement filter includes a template matching module for comparing an observed pixel pattern comprising a target pixel and one or more neighboring pixels to a set of templates to determine if the observed pixel pattern matches any of the templates. The template matching module generates a match identifier signal indicating which of the templates, if any, the observed pixel pattern is found to match. Based on this match identifier, a signal generation module provides an enhanced output signal for the target pixel. The template matching and/or the signal generation modules can be independently modified to adapt to changing conditions as identified by signals identifying image attributes and marking process attributes.
Abstract:
The present invention is a method and apparatus for generating N-bit per pixel output signals in response to M-bit per pixel image input signals, where M is greater than N. The invention employs a halftone cell threshold memory that stores a single threshold for each cell element. During real-time processing of the video image signals, multiple thresholds are calculated based upon the stored thresholds, and the image signals are compared to the thresholds. The threshold calculation process is simplified by using equally spaced constants and any desired variation from the resulting equally spaced thresholds is accomplished through a remapping of the video image signals using a look-up table. The output of the plurality of comparisons carried out for each halftone cell element is then encoded to produce a digital gray-scale output signal.
Abstract:
An image processing system for altering the size of an image represented by a plurality of input video signals including a controller for producing a scale factor and a scale factor valid signal. The controller also includes a padder which is used to increase the accuracy of the scale factor during the operation of the controller. The signals generated by the controller are passed to an interpolator suitable for producing an output signal as a function of one or more of the input video signals in response to the scale factor and scale factor valid signal.
Abstract:
Method and apparatus to increase the range of correction of photosite offset and gain response. Each photosite is provided with a correction value for offset and gain response based on measured light intensity value, which is stored in memory. Each photosite correction value is also provided with an attribute value which indicates whether the correction values are to be used as stored, whether a shift of the values is appropriate, in accordance with a stored shift value, or whether the photosite is noncorrectable, and accordingly requires the implementation of a bad pixel routine. Depending on the attribute value, logic is enabled to vary the correction values in accordance with a stored routine for shifting the stored correction value, or implementing a bad pixel routine. If the attribute requires a shifted value, the correction value is shifted a number of places in accordance with a shift stored in the decoder, before it is applied. If the attribute indicates that the photosite response is not correctable, a bad pixel correction routine is enabled, to produce substitute data.
Abstract:
A method and apparatus for processing a scan line of image data, wherein image data from portions of the scan line is processed simultaneously along plural channels, each channel processing a portion of the image data, and provided with context information from an adjacent portion of the scan line. Context pixels are added at the trail edge of a first scan line portion, derived from the lead edge of a second scan line portion. In certain image processing requiring preceding and succeeding pixel context information, subsequent to processing, on correctly processing pixels are transferred for subsequent processing, and pixels at the trail edge of a first scan line portion, and the lead edge of a second scan line portion are not transferred, leaving complementary scan line portions.
Abstract:
Apparatus for purifying toner prior to its use in developing latent electrostatic images. An electrically biased roll supported in the developer housing contiguous at least one of the development rolls serves to attract paper debris from the toner contained in the toner carried by the developer roll. The roll is fabricated from a suitable insulating material and electrically biased in a manner suitable for attracting the paper debris contained in the toner. The roll is rotated and a scraper blade is provided for removing the debris therefrom. The debris so removed is allowed to fall into a toner catch tray which can be provided with an auger for moving it out of the tray to thereby increase the capacity of the system for debris removal.