Abstract:
A method and apparatus of reducing interference in space frequency block coding (SFBC) communication are disclosed. SFBC encoding is performed on at least one pair of symbols. The symbols are assigned to subcarriers in accordance with a frequency assignment pattern assigned to a cell. Different frequency assignment patterns are assigned to neighboring cells. Cells in the network may be divided into a plurality of groups and a different frequency assignment pattern may be assigned to each group of cells. The frequency assignment pattern may be defined such that subcarriers mapped to a pair of symbols in one cell are interlaced to subcarriers mapped to a pair of symbols in a neighbor cell. Alternatively, the frequency assignment pattern may be defined such that subcarriers mapped to a pair of symbols in one cell are shifted in a neighbor cell.
Abstract:
A method and apparatus for precoding validation in wireless communications with reduced error probability is disclosed. Error probability is reduced by applying phase rotations to precoding matrices, dedicated pilot symbols, or both to maximize a minimum pairwise distance.
Abstract:
A method and apparatus for implementing hybrid automatic repeat request (H-ARQ) in a multiple-input multiple-output (MIMO) wireless communication system are disclosed. A transmitter transmits at least two data packets via two or more antennas. If at least one of the data packets is not successfully transmitted, the transmitter retransmits the data packets while rearranging the data packets in an orthogonal spreading manner. Alternatively, the transmitter may retransmit only the unsuccessfully transmitted data packet along with a new data packet which replaces a successfully transmitted data packet. The unsuccessfully transmitted data packet may simply be repeated without changing its format. When only the unsuccessfully transmitted data packet is retransmitted along with the new data packet, the transmissions may be combined to recover the retransmitted data packet and the new data packet simultaneously.
Abstract:
A simplified QAM signal constellation symbol-wise remapping scheme for data packet retransmissions to improve performance at a high coding rate. The simplified QAM signal constellation symbol-wise remapping scheme takes advantage of the separate I and Q labeling bits in a QAM signal to reduce the complexity of a receiving node. A method for adaptive switching between bit-wise and symbol-wise constellation remapping for data packet transmissions according to channel coding rate to achieve optimum performance across the range of channel coding rates.
Abstract:
Determining a power control group boundary includes receiving a plurality of samples having power control groups, where each power control group corresponds to a time period. The following are repeated for a predetermined number of iterations: a window is set at a point of a sample; a number of power control bits within the window at the point is determined; and the window is moved to a point of a next sample. A point at which the window has the largest number of power control bits is identified. A power control group boundary is determined in accordance with the window at the identified point.
Abstract:
A wireless communication method and apparatus for creating a codebook in a multiple input/multiple output (MIMO) wireless communication system are disclosed. The method includes adapting a single user codebook, wherein the single user codebook comprises a plurality single user beamforming vectors, into a multi-user codebook, wherein the multi-user codebook comprises a plurality of multi-user beamforming vectors. The method further includes grouping the codebook into a plurality of unitary matrices, selecting a plurality of beamforming vectors from the plurality of unitary matrices, forming a rank specific code-book from the beamforming vectors and the unitary matrices, and selecting a subset of a total number of pairs to form the plurality of unitary matrices.
Abstract:
Processing diversity signals includes receiving diversity signals at a number of antennas. The diversity signals have communicated information, and the antennas are associated with channel paths. A phase of at least one diversity signal is adjusted. The diversity signals are combined to form a combined signal. The combined signal is processed to yield the communicated information. A combined complex channel gain estimate is determined from the combined signal. An individual complex channel gain estimate is calculated for each antenna from the combined complex channel gain estimate. Phase adjustments associated with the channel paths are established according to individual complex channel gain estimates. The phase adjustments are applied to next diversity signals having next communicated information. The next diversity signals are processed to yield the next communicated information.
Abstract:
A client station in a wireless local area network (WLAN) communication system includes a beam commutation algorithm and a smart antenna responsive to the beam commutation algorithm for selecting one of a plurality of directional antenna beams. The smart antenna is configured as a virtual omni-directional antenna by using a commutation of switched directional antenna beams. A switched directional antenna system that performs a commutation sequencing can be blind to environmental conditions and changes.
Abstract:
Determining a power control group boundary includes receiving a plurality of samples having power control groups, where each power control group corresponds to a time period. The following are repeated for a predetermined number of iterations: a window is set at a point of a sample; a number of power control bits within the window at the point is determined; and the window is moved to a point of a next sample. A point at which the window has the largest number of power control bits is identified. A power control group boundary is determined in accordance with the window at the identified point.
Abstract:
A communications device with a switched beam antenna operates in a wireless local area network (WLAN) that includes a plurality of transmitters. The switched beam antenna generates a plurality of antenna beams. A method for operating the communications device includes receiving signals from the plurality of transmitters operating within the WLAN, identifying the received signals comprising medium access control (MAC) information, and determining a quality metric for each received signal comprising MAC information. A transmitter is selected based on the quality metrics. The antenna beams are scanned for receiving from the selected transmitter the signals comprising MAC information. A quality metric associated with each scanned antenna beam is determined. One of the scanned antenna beams is then selected for communicating with the selected transmitter based on the quality metrics.