摘要:
Determining a power control group boundary includes receiving a plurality of samples having power control groups, where each power control group corresponds to a time period. The following are repeated for a predetermined number of iterations: a window is set at a point of a sample; a number of power control bits within the window at the point is determined; and the window is moved to a point of a next sample. A point at which the window has the largest number of power control bits is identified. A power control group boundary is determined in accordance with the window at the identified point.
摘要:
Determining a power control group boundary includes receiving a plurality of samples having power control groups, where each power control group corresponds to a time period. The following are repeated for a predetermined number of iterations: a window is set at a point of a sample; a number of power control bits within the window at the point is determined; and the window is moved to a point of a next sample. A point at which the window has the largest number of power control bits is identified. A power control group boundary is determined in accordance with the window at the identified point.
摘要:
Adjusting a signal includes receiving signals and quality indicators at an adjuster. The quality indicators include as least one of a power control group boundary signal, a power control group index, a PN code per active finger, a reverse power control bit per active finger, an energy per chip over noise power spectral density ratio per active finger, channel estimates I/Q per active finger, an energy per bit over noise power spectral density, a transmit AGC signal, a total receive power, and any combination of the preceding. A signal adjustment is calculated according to the quality indicators, and the signals are adjusted according to the signal adjustment to yield adjusted signals.
摘要:
Adjusting a signal includes receiving signals and quality indicators at an adjuster. The quality indicators include as least one of a power control group boundary signal, a power control group index, a PN code per active finger, a reverse power control bit per active finger, an energy per chip over noise power spectral density ratio per active finger, channel estimates I/Q per active finger, an energy per bit over noise power spectral density, a transmit AGC signal, a total receive power, and any combination of the preceding. A signal adjustment is calculated according to the quality indicators, and the signals are adjusted according to the signal adjustment to yield adjusted signals.
摘要:
Communication is performed for a first communication device having a set of antenna elements. A quality-indication signal is received from a second communication device (e.g., a basestation). A complex weighting is calculated based on the quality-indication signal. A pre-transmission signal is modified based on the complex weighting to produce a set of modified-pre-transmission signals. Each modified pre-transmission signal from the set of modified-pre-transmission signals is uniquely associated with an antenna element from the set of antenna elements. The set of modified-pre-transmission signals is sent from the set of antenna elements to produce a transmitted signal. The complex weighting is associated with a total power of the transmitted power and at least one from a phase rotation and a power ratio associated with each antenna element from the set of antenna elements. For example, in CDMA based systems, a fast feedback from the basestation—the power control indication—can be used by a subscriber communication device for this transmission diversity method in such a way that provides the desired signal quality at the basestation, without necessarily responding to fading nulls by mobile unit power output increase, but rather, by manipulating the weights of the mobile transmitter antenna array. Thus, a significant reduction in average and peak mobile power level is achieved, enhancing network capacity, battery life, and radiation hazards.
摘要:
Combining signals includes receiving a plurality of groups of signals at a plurality of antennas at a mobile device, where each group of signals includes a plurality of signals, and each signal includes a time slot. The following is repeated for each group of signals of the plurality of groups of signals. An adjustment associated with a time slot of each signal is set. Each signal of the group of signals is adjusted at the time slot in accordance with the adjustment associated with the time slot. A signal quality associated with each time slot of each signal of the group of signals is established, and an optimal adjustment in accordance with the signal qualities is determined. The signals are adjusted in accordance with the optimal adjustment.
摘要:
One or more quality indicators are established at a first communication device having antenna elements. The quality indicators indicate a quality of one or more communication links between the first communication device and one or more second communication devices. A modification is determined according to the quality indicators, where the modification describes at least one adjustment of one or more modulation features. At least some of a set of signals are modulated in accordance with the modification, where a signal is associated with an antenna element. The set of signals is sent from the antenna elements to yield a transmitted signal.
摘要:
One or more quality indicators are established at a first communication device having antenna elements. The quality indicators indicate a quality of one or more communication links between the first communication device and one or more second communication devices. A modification is determined according to the quality indicators, where the modification describes at least one adjustment of one or more modulation features. At least some of a set of signals are modulated in accordance with the modification, where a signal is associated with an antenna element. The set of signals is sent from the antenna elements to yield a transmitted signal.
摘要:
A mobile communication device may transmit a signal using a plurality of antenna elements, the signals differing by a transmit diversity parameter, e.g., a phase difference. The mobile communication device may receive a quality-indication signal from a basestation, e.g., a power control bit or signal. A sequence of the power control bits or signals may be used to provide feedback to the mobile communication device to determine a change in a transmit diversity parameter.
摘要:
Processing a downlink signal includes receiving a downlink signal at the antennas of a mobile device, where each antenna generates a diversity signal associated with the downlink signal, and where the downlink signal includes information. Diversity signals are generated and a delay of less than one chip duration is applied to at least one of the diversity signals. The diversity signals are then processed to obtain the information. Processing a transmit signal includes receiving a transmit signal at a splitter, where the transmit signal includes information. The transmit signal is split into split signals. At least one delay is applied to at least one of the split signals to yield transmit diversity signals, and the transmit diversity signals are transmitted.