Abstract:
System and method for updating a data structure are disclosed. In one embodiment, the method includes providing a data structure that includes a hierarchically arranged set of nodes and branches, and each node has two or less branches, retrieving a first data entry in the data structure via a first node in response to a first data access request, modifying the data structure to generate a first intermediate data structure that keeps the first node and creates a duplicate of the first node, and retrieving a second data entry in the data structure via the duplicate of first node in response to a second data access request. By maintaining at least the first node or a duplicate of the first node during a rebalancing operation of the data structure, the disclosed method supports accessing data entries associated with the first node during the rebalancing operation and therefore improves system performance.
Abstract:
An apparatus including top and bottom portions that when mated form a connector. The top portion includes a top connector portion including a first wall, a second wall opposite the first wall, a first top cap connecting the first and second walls, and wherein the first wall comprises a first concave/convex feature for interlocking. The bottom portion includes a bottom connector portion configured to mate with the top connector portion to form the connector. The bottom connector portion includes a third wall, a fourth wall opposite the third wall, a first bottom connecting the third wall and the fourth wall, and wherein the third wall includes a second concave/convex feature for interlocking with the first concave/convex feature, wherein the second concave/convex feature is oriented opposite the first concave/convex feature.
Abstract:
In a communication device using a plurality of signal enhancement mechanisms, a system and method are provided for managing signal processing power consumption. A receiver accepts a communications signal and analyzes signal integrity. In response to analyzing the signal integrity, a signal enhancement mechanism is changed, and device power consumption is modified in response to changing the signal enhancement mechanism. In one aspect, the receiver changes a receiver signal enhancement mechanism, and modifies its power consumption. For example, one or more of the following receiver signal enhancement mechanisms may be selected: forward error correction (FEC), equalization, dc voltage level, and physical coding sublayer (PCS).
Abstract:
A method and system are provided for accelerated data uploading to a remote service device destination. An on-line (third party) storage device receives an upload request message from a network-connected client device. A unique first descriptor in a descriptor field of the upload request message is accessed and compared to a list of descriptors maintained by the on-line storage device. If the accessed first descriptor is on the list, a first file is read that is stored in the on-line storage device and associated with the accessed first descriptor. The first file is then sent to a network-connected remote service device.
Abstract:
Methods and systems for multi-input IIR filters with error feedback are disclosed. By using multiple-inputs to generate multiple outputs during each iteration, a multi-input IIR filter in accordance with the present invention has greatly increased throughput. Furthermore, the addition of a multi-variable error feedback unit in accordance with the present invention in a multiple-input IIR filter can greatly increase the accuracy of the multi-variable IIR Filter.
Abstract:
A system and method are provided for downloading data to a client device by deferral to an on-line storage device. A client sends a login request to a network-connected remote service device, and receives a remote service identification (ID) from the remote service device. The client sends a token request message, with the remote service ID, to a network-connected on-line storage device, and receives a first token identification (ID) associated with a first session and an on-line storage ID from the on-line storage device. The client sends an upload request message to the remote service device. The upload request message includes the first token ID and on-line storage ID, and identifies a first file to be uploaded to the on-line storage device. Subsequent to the on-line storage device receiving the first file from the remote service device, the client downloads the first file from the on-line storage device.
Abstract:
A system and method are provided for framing messages in a data streams encoded with redundant information for transmission and recovering the messages at a receiver. The transmission method accepts an energy waveform representing N words at a first bit rate, encoded with redundant information, where each word includes P number of bits. The N words are transformed, creating N transcoded words, where each transcoded word includes Q number of bits, and where Q 1 and each lane receives a frame of N/M transcoded words. A frame alignment marker is generated and mapped into each frame. Each frame is represented as an energy waveform that is transmitted on a corresponding physical lane at the first bit rate divided by M.
Abstract:
A system and method are presented for providing packet and time division multiplex (TDM) services in a data communication interface. The method accepts packets at a first rate over a packet interface, and transfers time-sensitive data in the packets as packet data units (PDUs) having a smaller number of bits than a packet and a second rate, faster than the first rate. The method transforms the PDUs into frames in a first TDM protocol. Typically, the PDUs are transformed into units having a smaller number of bits than the PDU and a third rate, faster than the second rate. Then, the TDM frames are transmitted over a line interface.
Abstract:
A circuit analysis tool is provided for optimizing circuit clock operating frequency using useful skew timing analysis. The instructions supply clock signal with an optimized operating frequency. A first gate signal input slack time is determined with respect to the clock signal to the first gate. If the first gate signal input has a negative slack time, a delay is added to the first clock signal. A second gate signal input slack time is determined with respect to the clock signal to the second gate. If the second gate signal input slack time is negative, a delay is added to the second clock signal necessary to create a second gate signal input positive slack time. In response to the first and second gate signal input positive slack times, it is determined that the circuit successfully operates at the clock optimized operating frequency.
Abstract:
One or more processing units are programmed to select from among M tones in a frequency domain representation of a signal, a set of tones including at least a strongest tone (relative to background noise) and a tone adjacent thereto. From among M complex numbers in the frequency domain representation of the signal, a set of complex numbers are identified and denoted as a vector Z, corresponding to the selected set of tones. Vector Z is then multiplied with each of M columns of a matrix G which is predetermined to identify a sub-resolution maxima in Z. The M products that result from the vector multiplication of Z and G are used to determine and store in memory at least one or both of: (A) a flag indicating presence or absence of narrowband interference in the signal; and (B) an estimate of a frequency of the narrowband interference.