Process for the conversion of oxygenates to C5+ hydrocarbons boiling in the gasoline boiling range

    公开(公告)号:US11060036B2

    公开(公告)日:2021-07-13

    申请号:US17040863

    申请日:2019-05-02

    Abstract: Process for the conversion of oxygenates to C5+ hydrocarbons boiling in the gasoline boiling range, comprising the steps of continuously a) providing one or more feed streams of one or more oxygenate compounds; b) heating the one or more feed streams to an inlet temperature of one or more downstream conversion reactors; c) introducing the one or more heated feed stream into inlet of the one or more conversion reactors; d) converting in the one or more conversion reactors the one or more heated feed stream in presence of catalyst to a converted oxygenate product comprising C5+ hydrocarbons; e) withdrawing from the one or more conversion reactors the converted oxygenate product; f) determining at outlet of the one or more conversion reactors amount of the one or more unconverted oxygenate compounds in the withdrawn converted oxygenate product; g) separating the converted oxygenate product into a C4− hydrocarbon fraction, a fraction with the C5+ hydrocarbons boiling in the gasoline boiling range and a fraction comprising water and the one or more unconverted oxygenate compounds, wherein the inlet temperature of the one or more feed streams in step b is continuously adjusted to maintain a constant amount of the one or more unconverted oxygenate compounds as determined in step f.

    DOPED LITHIUM POSITIVE ELECTRODE ACTIVE MATERIAL AND PROCESS FOR MANUFACTURE THEREOF

    公开(公告)号:US20210130190A1

    公开(公告)日:2021-05-06

    申请号:US17041834

    申请日:2019-05-06

    Abstract: The invention relates to a lithium positive electrode active material for a high voltage secondary battery, where the cathode is fully or partially operated above 4.4 V vs. Li/Li+. The lithium positive electrode active material comprises at least 95 wt % spinel having a chemical composition of LixNiyMn2-y-zDzO4, wherein 0.9≤x≤1.1, 0.4≤y≤0.5, 0.02≤z≤0.2, wherein D is a dopant chosen between the following elements: Co, Cu, Ti, Zn, Mg, Fe or combinations thereof. The lithium positive electrode active material is a powder composed of secondary particles formed by primary particles, wherein said lithium positive electrode active material has a tap density of at least 1.9 g/cm3. The invention also relates to process for preparing the lithium positive electrode active material of the invention and a secondary battery comprising the lithium positive electrode active material of the invention.

    A METHOD FOR GENERATING GAS MIXTURES COMPRISING CARBON MONOXIDE AND CARBON DIOXIDE FOR USE IN SYNTHESIS REACTIONS

    公开(公告)号:US20210054510A1

    公开(公告)日:2021-02-25

    申请号:US17046050

    申请日:2019-04-11

    Abstract: A method for the generation of a gas mixture comprising carbon monoxide, carbon dioxide and optionally hydrogen for use in hydroformylation plants or in carbonylation plants, including mixing an optional steam with carbon dioxide in the desired molar ratio, feeding the resulting gas to a solid oxide electrolysis cell (SOEC) or an SOEC stack at a sufficient temperature for the cell or cell stack to operate while effecting a partial conversion of carbon dioxide to carbon monoxide and optionally of steam to hydrogen, removing some or all the remaining steam from the raw product gas stream by cooling the raw product gas stream and separating the remaining product gas from a liquid, and using said gas mixture containing CO and CO2 for liquid phase synthesis reactions utilizing carbon monoxide as one of the reactants while recycling CO2 to the SOEC or SOEC stack.

    A METHOD FOR GENERATING SYNTHESIS GAS FOR AMMONIA PRODUCTION

    公开(公告)号:US20210032761A1

    公开(公告)日:2021-02-04

    申请号:US16641007

    申请日:2018-10-01

    Abstract: In a method for generating ammonia synthesis gas by electrolysis, comprising feeding a mixture of steam and compressed air into the first of a series of electrolysis units and passing the outlet from one electrolysis unit to the inlet of the next electrolysis unit together with air, the electrolysis units are run in endothermal mode and the nitrogen part of the synthesis gas is provided by burning the hydrogen produced by steam electrolysis by air in or between the electrolysis units. The electrolysis units are preferably solid oxide electrolysis cell (SOEC) stacks.

Patent Agency Ranking