Abstract:
The system uses a shrink film covering all the products (12) arranged inside a cardboard box (1) and holding these products against one another and also against the base (2) of the box. At least two heat-shrinkable sheets (9, 10) are attached, by one of their edges, in the region of the join between the base (2) of the box and the sides (4) of the lateral band (3) of this box. An additional heat-shrinkable sheet (14), supplied at the upper level of the lateral band (3) or of the products (12), is joined by welding to the previous sheets (9, 10) in order to form a single film that is shrunk over the products (12). A heat-protection sheet (13) may be inserted between this film and the products (12). The invention applies to packaging for the preparation and dispatch of product orders.
Abstract:
A method for sequencing loads in an automated load-distribution system having k sources with k≥2; at least one destination; k FIFO-type source buffer devices, each receiving loads from one of the k sources; a collector collecting the loads from the k source buffer devices and transporting them to the at least one destination. The collector includes k successive nodes each configured to collect the loads from one of the source buffer devices. The control system processes customer orders listing loads for a given destination and being each associated with a sequential order number of destination. The control system: builds a collection list containing n loads to be collected and reducing a disorder of the n loads relative to a rising order of the sequential order numbers of destination; and controls the collector and the source buffer devices to collect loads compliant with the collection list.
Abstract:
A method for managing a buffer storage and load sequencing system, receiving non-sequenced loads, providing a sequence of loads, and including a buffer storage unit (having entrance levels, at least one recirculation level, and an entrance elevator facing entrances and an exit elevator facing exits of the levels. A management unit iteratively manages the entrance elevator by, at each iteration (even if there are loads to be recirculated in the system): selecting a load at exit from an entrance conveyor or at exit from the recirculation level; if the selection of one of the entrance levels is completed, generating a task for the entrance elevator of transferring the selected load to the entrance of the selected level; if not, selecting a level of loads to be recirculated and assigning the load(s) on this level a “load(s) to be recirculated” status without generating a task of transfer for the entrance elevator.
Abstract:
A method for managing a buffer storage and load sequencing system. The system receives non-sequenced loads and provides at least one sequence of loads, and includes a buffer storage unit having entrance levels, at least one recirculation level, an entrance elevator facing entrances and an exit elevator facing exits of the levels. A management unit iteratively manages the entrance elevator. At each iteration the entrance elevator: has a “waiting for recirculation” status for a load to be recirculated in the system; holds this elevator until the load to be recirculated has been transferred to the recirculation level, else selects a load at exit from an entrance conveyor or at exit from the recirculation level; if the selection of the entrance level is completed, generates a task, for the entrance elevator, of transferring the selected load to the selected level; if not assigns this load the “awaiting recirculation” status.
Abstract:
A method of sequencing loads in an automated distribution system having sources, at least one destination, a collector having successive nodes, and a control system to process customer orders. The method includes, for an analyzed node, injection including, to decide whether a load C having a sequential order number of destination for a given destination can be injected into the collector: creating, among the loads to be collected by at least one node downstream to the analyzed node, a list LI1 of loads having an order number of destination lower than the given order number of destination and a list LI2 of loads that are interposed between a load of the list LI1 and the collector; determining whether “the list LI1 is empty” and/or “the list LI1 is not empty and the list LI2 is empty”; if one of the two conditions is verified, then injection of the load C.
Abstract:
A system for conveying loads without sequencing, between storage units and preparation stations. The system includes upper collectors and lower collectors of opposite directions, rectilinear, parallel and positioned on upper and lower horizontal planes respectively; and for at least one first storage unit/preparation station couple, a first set of conveyors composed of two storage unit upper exit and upper entry conveyors and two storage unit lower exit and lower entry conveyors to connect the storage unit to the collectors and two preparation station upper exit and upper entry conveyors and two preparation station lower exit and entry conveyors to connect the preparation station to the collectors.