Abstract:
A gas purge valve (114A-D) is provided within a fluid system, the valve being configured with one or more sensors (134B) each for sensing and generating one or more signals indicative of parameters associated with the valve. The fluid system further comprises a power source and a transmitting system for transmitting signals from the sensors to a remote control station (130).
Abstract:
Appurtenances added to a pipe mitigate the effects of upstream valves, sluice gates or pipe elbows to condition the pipe flow for accurate flow rate detection by a reverse propeller meter. Further appurtenances allow the reverse propeller meter to be used in extreme debris situations such as weeds, vines and moss present in many canal systems. The system provides an electronic signal that indicates flow rate and accumulated flow volume, or the signal can be transmit to a central headquarters for remote gate control or canal automation.
Abstract:
A system that prevents the backflow of fluid is disclosed. The system comprises a housing, two rubber flaps that are attached in such a way to create a one-way valve, and a water sensor. The flaps are anchored to the inside of the housing and open due to the force of fluid flowing in one direction. Fluid flowing in the opposite direction presses the ends of the flaps against each other, thus closing the valve and preventing water from backflowing through the system. A water sensor, mounted within the housing, is activated when a backflow fills the housing, thus providing an alarm to indicate a backflow event has occurred.
Abstract:
A combined water storage and detention (CWSD) system for maximizing storm water control and availability for use. The CWSD system includes a plurality of water conduits, remotely controllable water pumps, water storage drain valves, auxiliary bypass discharge valves, and, in pertinent part, a storage/detention system for storing/retaining a first volume of storm and sewer drain water, a sensing device for estimating a second volume of storm and sewer drain water within the storage/detention system, the second volume being less than or equal to the first volume, a precipitation forecast device for forecasting an expected time-dependent volume of water being added to or to be added to the system, and a controller that is structured and arranged to control the operating states of the plurality of controllable water pumps, water storage draining valves, and auxiliary bypass discharge valves. Preferably, the precipitation forecast device provides weather precipitation parameter data from a network source such as the World Wide Web, the Internet, a local area network (LAN), and a wide area network (WAN) and the sensing device is adapted to determine at least one of whether the second volume is below a pre-established minimum storage volume and whether the second volume is above a pre-established maximum storage volume.
Abstract:
A wastewater control system for use with a sewer service line conducting a flow of wastewater from a building to a sewer main. A flow control device is installed in the sewer service line; and an actuator, in electrical communication with the sensor, is connected to the flow control device. The actuator in response to an output signal from a hydrologic sensor causes the flow control device to block the flow of wastewater to the sewer main and detain the wastewater in the sewer service line.
Abstract:
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Abstract:
The gravity flow of a liquid in an open pipe is metered during open channel flow, during surcharged flow, and during the transition between the two. A tubular venturi metering device is employed, and when during open channel flow, the liquid depth rises in the section of the pipe upstream from the device, the throat of the device fills with liquid substantially simultaneously with the upstream section of the pipe, so that during the transition, the device continues to provide a flow determination.