Abstract:
A downwind rotor type wind power generation device which allows a nacelle to be transported and installed more conveniently without the need for troublesome detachment and reattachment of a heat exchanger and also improves the efficiency in cooling a generator. The downwind rotor type wind power generation device includes a rotor having a hub and a plurality of blades extending radially from the hub, a nacelle having a generator for converting the rotational energy of the rotor into electric energy and a heat exchanger for exchanging heat with heat generated at least by the generator and supporting the rotor rotatably, and a tower supporting the nacelle rotatably around a vertical axis so that the rotor is positioned downwind. The heat exchanger is located on the opposite side of the rotor with respect to the vertical axis and exposed.
Abstract:
A high-pressure compressor (12), in particular in a gas turbine (10), has a compressor rotor (17) which is surrounded by a stator (18, 19) thereby forming a main flow channel (25) and which is delimited at the compressor outlet by an end face (30) substantially extending in the radial direction, along which end face cooling air (21) is conveyed in the radial direction for the purpose of cooling. A prolonged service life is achieved in that the end face (30) is provided with a first system (23, 24) for improving the heat transfer between the cooling air (21) and the end face (30).
Abstract:
A scoop (54) over a coolant inlet hole (48) in an outer wall (40B) of a double-walled tubular structure (40A, 40B) of a gas turbine engine component (26, 28). The scoop redirects a coolant flow (37) into the hole. The leading edge (56, 58) of the scoop has a central projection (56) or tongue that overhangs the coolant inlet hole, and a curved undercut (58) on each side of the tongue between the tongue and a generally C-shaped or generally U-shaped attachment base (53) of the scoop. A partial scoop (62) may be cooperatively positioned with the scoop (54).
Abstract:
Embodiments of the invention relate to a combustor flow sleeve for a turbine engine. The flow sleeve can be configured to optimize cooling and airflow distribution. The flow sleeve can include first and second sets of openings. A first set of openings can be provided for impingement cooling the areas of the liner that are subjected to high thermal loads. The second set of openings can be provided to more evenly distribute the airflow into the combustor head-end. By focusing the cooling on the areas of need and by making the airflow more uniform, embodiments of the invention can reduce the system pressure drop and enhance the performance and power of the engine.
Abstract:
A system is provided for cooling especially the backplate of a flame tube of a combustion chamber for gas turbine engines, of the type having at least one burner arranged on the backplate and having a fuel nozzle and at least one swirler arranged coaxially with the fuel nozzle for the supply of combustion air. The backplate is cooled with compressed air diverted from a compressor and ducted to a head end of the combustion chamber. The backplate forms at least one cooling air duct to carry the compressed air supplied for backplate cooling, and the cooling air duct communicates at its outlet end at the burner with the flame tube such that the compressed air issuing from the cooling air duct enters into combustion in the primary zone. At its outlet end the cooling air duct can communicate with the air inlets of at least one swirler.
Abstract:
In a gas turbine combustion chamber cooled by means of impingement and convection cooling or pure convection cooling, a compensating flow of the cooling air is guided between adjacent cooling ducts (2) in such a way that the flow velocity in the cooling duct (2) always exceeds a critical limiting value even downstream of a local damage location (6) so that the temperature is less than a critical limiting value. The compensating flow is led past the combustion chamber outer wall. Connecting openings (5) are arranged between adjacent cooling ducts (2) and are respectively offset on the opposite sides of the cooling duct (2).
Abstract:
A gas turbine engine combustor 20 has a wall structure 22 including an outer wall 24 having a plurality of wall elements 26 attached thereto. Each wall element 26 has a flange 27 around its periphery which defines a chamber 28 between each wall element and the outer wall 24. Holes 30 in the outer wall 24 permit the flow of cooing air into each chamber 28 to provide impingement cooling of the wall elements 26. Holes 30 in the wall elements 26 permit the exhaustion of cooling air from the chambers to provide film cooling of the wall elements 26.
Abstract:
A combustor effective for reducing exhaust emissions is disclosed. The combustor includes first and second liners defining a primary combustion zone, and a plurality of circumferentially spaced carburetors. Each of the carburetors includes a fuel injector providing fuel into an air swirler for mixing the air and fuel and providing a fuel/air mixture into the combustor primary zone. The combustor also includes means for obtaining a fuel distribution from each of the carburetors extending radially from a first liner upstream end through a center region of the combustor to a second liner upstream end with values of the fuel distribution at the center region being generally no greater than about values of the fuel distribution adjacent to at least one of the first and second liners. The first and second liners have upstream portions characterized by the absence of film cooling thereof.
Abstract:
A combustor of a gas turbine having a double wall construction in one part of the combustor, wherein an outer plate is formed with a multiplicity of cooling air inlet apertures and an inner plate is formed with a multiplicity of cooling air outlet apertures. The inner and outer plates are connected together by a multiplicity of connectors formed of heat conductive material and define therebetween a space. The cooling air inlet apertures are greater in diameter but smaller in total area than the cooling air outlet apertures which are inclined at an angle of 30 degrees. Cooling air introduced into the space through the cooling air inlet apertures impinge on the inner surface of the inner plate and performs impinge cooling while the connectors perform pin fin cooling. The cooling air also performs film cooling as it flows along the outer surface of the inner plate after cooling the walls of the cooling air outlet apertures while being released.
Abstract:
The disclosure is of a combustion chamber having prevaporizing pipes for the injection of fuel and shield cups intended to play the role of thermal barriers, upon which the hot jets issuing from the injectors are broken up. The shield cups have ribs toward which high velocity jets of air are directed, the jets of air issuing from small orifices. Other small orifices may addtionally open on a ridge of the ribs, so as to form supplementary jets of air convergent with the first set of jets of air.