Abstract:
The invention relates to a compressed-air device for controlling valves comprising, in a longitudinal direction, a first vane-type rotary cylinder (1) having a front face (2) as well as a back face (4), said front face (2) being provided with a rotatable head (3), and a second vane-type rotary cylinder (10) having a front face (11) and a back face, said first (1) and second (10) cylinders each being supplied with compressed air by means of a compressed air valve connected to two ports (7, 8; 14, 15) on each of said first and second cylinders.
Abstract:
A multiple-stage fluid operated actuator (100) is provided. The multiple-stage fluid operated actuator (100) comprises a housing (101) including a first bore (212) with a first cross-sectional area and a second bore (215) with a second cross-sectional area. The multiple-stage fluid operated actuator (100) further comprises a piston assembly (210) including a first piston (210a) movable within the first bore (212) and a second piston (210b) movable within the first and second bores (212, 215). The piston assembly (210) separates the first and second bores (212, 215) into a first fluid chamber (214a) selectively in fluid communication with a pressurized fluid source (220) or an exhaust, an airtight second fluid chamber (214b), and a third fluid chamber (214c) selectively in fluid communication with the pressurized fluid source (220) or the exhaust.
Abstract:
In a module system for manufacturing variants of two and three stable positions fluid-operated actuators a cylinder housing of both variants of two and three stable positions actuators is manufactured from a blank. The blank includes at least one opening for a cover and is identical for the variants of the two and three stable position actuator, and is at least prepared for the arrangement of a first pressure duct, a second pressure duct, and a first cylinder diameter of the cylinder housing.
Abstract:
A pusher which has a stroke shorter than that of a piston at either position on a head side or a rod side in a cylinder main body and which serves as both means for pushing the piston from a stroke end back to an intermediate stopping position and means for stopping the piston at the intermediate stopping position is disposed so as to be movable independently from the piston, and pressing means for causing the pusher to displace to the intermediate stopping position is provided.
Abstract:
Disclosed is system for controlling a dynamic hydraulic component, such as a hydraulic actuator or motor. The system allows for either zero, restricted or full fluid flow to the hydraulic component. This enables either no movement, slow, precise movements, or rapid, major movements of the component. The functionality of the system is accomplished using a multi-pilot system acting on a spool valve that has a pilot piston and at least one stop piston. The stop piston(s) can move to limit the movement of the pilot piston.
Abstract:
A first piston 13A and a second piston 13B are disposed in a cylinder tube 12A, a hollow piston rod 17 is connected to the second piston 13B, an intermediate stop rod 16 which penetrates the second piston 13B and is fitted into the piston rod 17 is connected to the first piston 13A, a stopper 19 with which the second piston 13B engages is disposed at the tip of the intermediate stop rod 16, and cylinder chambers 14A, 14B and 14C are formed respectively between the first piston 13A and the head cover 12B, between both pistons 13A and 13B, and between the second piston 13B and the rod cover 12C.
Abstract:
An assembly for moving objects by mechanical linkages has a power cylinderith a shoulder at the juncture of a small bore and a large bore and with ports adjacent each end and one adjacent the shoulder. A shaft extends through the cylinder with a larger diameter portion in the smaller bore with a piston thereon sealing against the surface of the smaller bore. A second piston slidably seals on the small diameter of the shaft and against the larger bore, being biased towards the shoulder by a spring. A lost motion device on the end of the shaft projects outwardly of the smaller bore end of the power cylinder and has a housing with a chamber in which the end of the shaft is slidable against a spring which biases it outwardly of the housing. Pressurized fluid when supplied to the ports in the large portion of the power cylinder moves the shaft within the lost motion device against the spring to move the lost motion device, and when supplied to the ports at the ends of the power cylinder, permits the spring of the lost motion device to bias the piston shaft in the direction of the large bore. When supplied only to the port in the smaller diameter bore, the shoulder on the piston shaft will move the slidable piston against its spring and the piston shaft is moved still further in the direction of the large bore. When a pair of positioning members is attached to opposite sides of the lost motion device, the assembly enables selective motion of both positioning members and additional motion of only the positioning member attached to the shaft before the lost motion device.
Abstract:
A three position actuator which is used to position the gear range control lever on a two speed transfer case. Three positions are required to achieve HIGH, LOW and NEUTRAL. Two individual air chambers may be selectively charged with compressed air to move two pistons along a common actuator rod to achieve linear translation of the control lever to selectively position the transfer case in HIGH, NEUTRAL or LOW range. The transfer case is shifted from LOW to NEUTRAL or HIGH to NEUTRAL by releasing the respective charge of compressed air thereby permitting a spring to shift the control lever to neutral. Thus, in the event of a failure of the system supplying the compressed air, the actuator will return the transfer case to NEUTRAL as required for towing.
Abstract:
The present invention includes a three position actuator which is used to position the gear range control lever on a two speed transfer case. Three positions are required to achieve HIGH, LOW and NEUTRAL. Two individual air chambers may be selectively charged with compressed air to move two pistons along a common actuator rod to achieve linear translation of the control lever to selectively position the transfer case in HIGH, NEUTRAL or LOW range. The transfer case is shifted from LOW to NEUTRAL to HIGH by releasing the charge of compressed air thereby permitting the return spring to shift the control lever to HIGH gear range. Thus, in the event of failure of the system supplying the compressed air, the actuator will return the transfer case to HIGH gear range which provides an appropriate gear range selection for limp home mode.
Abstract:
A speeed control mechanism having a main spool valve and metering valves controls the output to and return flow from an hydraulic fluid actuator. The main spool valve controls the direction and acceleration of the actuator, and the metering valves determine the maximum velocity of the actuator independent of the load. Adjustment features are provided to control the maximum displacement and the speed of the displacement of the main spool valve. Moreover, a novel adjustment feature is incorporated into the main spool valve to control the maximum volumetric flow rate through the metering valves.