Abstract:
A gas-over-oil actuator system for use with a valve in a natural gas pipeline. The system includes a gas-over-oil actuator and a wireless position monitor operatively coupled to the gas-over-oil actuator. The wireless position monitor includes an integral opened spool valve and is adapted to be communicatively coupled to a remote workstation via a wireless network and a wireless gateway. At least one switching relay is operatively coupled to the gas-over-oil actuator and the wireless position monitor. Upon receiving a wireless command from the remote workstation, the wireless position monitor drives a pressure signal from the opened center spool valve to the at least one switching relay to manage high pressure supply to the gas-over-oil actuator and move the valve to a desired position.
Abstract:
A valve arrangement for a fluidic supply of a fluid load, with several main valves designed for influencing fluid flows at the fluid ports, and with electrically controllable pilot valves designed for fluidic control of the main valves. A base body is assigned a connection plate lying opposite a connection face and having a fluid passage which leads into an operating port for the connection of a fluid load wherein, between the connection face and the connection plate there is provided a separate passage body which has at least one connection passage for a fluidically communicating link between at least one of the fluid ports and the operating port, and at least one connecting conduit for a fluidic coupling of at least two fluid ports.
Abstract:
A proportional pressure controller includes a body having inlet, outlet, and exhaust ports. A fill valve communicates with pressurized fluid in the inlet port. A dump valve communicates with pressurized fluid from the fill valve. An inlet poppet valve opens by pressurized fluid through the fill valve. An exhaust poppet valve when closed isolates pressurized fluid from the exhaust port. An outlet flow passage communicates with pressurized fluid when the inlet poppet valve is open, and communicates with the outlet port and an exhaust/outlet common passage. An isolation valve assembly selectively isolates fluid flow to and from the inlet port or the exhaust port to achieve a zero pressure condition.
Abstract:
A double-solenoid directional control valve comprising a valve body and a valve spool within the valve body, where the valve spool is configured to move within the valve body between a first position, a second position and a third position, where the third spool position lies between the first and second spool positions. In certain embodiments, the spool is maintained in the first and third positions by energizing at least a first or a second solenoid actuator, and where the spool is maintained in the second position by de-energizing both solenoid actuators.
Abstract:
A hydraulic valve with electropneumatic activation includes an air inlet that receives pressurized air from an air compressor and directs it into a line of the cylinder. The line is connected to an extension line attached to a solenoid extension valve that allows or blocks the passage of pressurized air from the extension line to a rear line. The rear line is attached to the rear chamber of the cylinder and connected to a retraction line attached to a solenoid retraction valve that allows or blocks the passage of pressurized air from the retraction line to an anterior line, which is attached to the front chamber of the cylinder. Thus, the passage of pressurized air is managed according to the desired movement of the stem of the hydraulic actuator. The pneumatic tubes are eliminated and electropneumatic valves are replaced by solenoid valves incorporated into the cylinder of the hydraulic valve.
Abstract:
A sequentially operated hydraulic valve for regulating a hydraulic fluid pressure from a single pressurized hydraulic fluid source to two different regulated pressures controlled by a single linear spring and by varying the position of end of the spring relative to the other end of the spring.
Abstract:
Embodiments of the invention provide a first piston with a smaller diameter and a second piston with a larger diameter that switch a spool between a first switching position at one end and a second switching position at the other end, and a return spring that moves the spool to a neutral switching position are provided, at the neutral switching position, some of a plurality of ports communicate with one another and remaining ports are closed; at the first switching position, the communication-and-closure relationship of the plurality of ports is the reverse of that in the neutral switching position; and at the second switching position, all the plurality of ports are closed, and when the spool is switched to the neutral switching position and the first switching position, only the first piston is operated, and when the spool is switched to the second switching position, the second piston is operated.
Abstract:
A hydraulic circuit for operating a tool is provided that is particularly useful in construction equipment such as an excavator, crane, wheel loader, drilling machine, or others. Furthermore, a control unit and a method for controlling the hydraulic circuit and construction equipment including such a hydraulic circuit is disclosed.
Abstract:
A device is described for controlling a hydraulic accumulator of a hydraulic system, for example a vehicle transmission, having a valve device which may connect and disconnect an accumulator-side port of the device to and from a system-side port, the valve device including at least one first check valve which is situated hydraulically between the accumulator-side port and the system-side port, and which is blocking in the direction of the system-side port, the valve device also including an electrically actuated control valve which is situated between a control port of the first check valve and the accumulator-side port in such a way that the control valve may hydraulically unblock the first check valve, using the pressure prevailing at the accumulator-side port.
Abstract:
A device is described for controlling a hydraulic accumulator of a hydraulic system, for example a vehicle transmission, having a valve device which may connect and disconnect an accumulator-side port of the device to and from a system-side port, the valve device including at least one valve main stage, which is situated hydraulically between the accumulator-side port and the system-side port and to which a pressure prevailing hydraulically at the accumulator-side port is preferably applied by an application means in the opening direction, the valve device also including an electrically actuated control valve which may connect the system-side port to a control port of the valve main stage which acts in the closing direction of the valve main stage and to the accumulator-side port, at least one first throttle being situated between the control valve and the accumulator-side port.