Abstract:
A fuel oil provision-vaporization-pressure regulation-full premixed combustion system includes an air pump, a fuel tank, a vaporizing chamber, a preheater, a premix nozzle, an ignition device, a full premixed combustor and an intake guiding device. The air pump communicates with an air inlet of the fuel tank through a first conduit. The fuel tank is provided with a fuel inlet and a fuel outlet pipe. The fuel outlet pipe communicates with a fuel inlet of the vaporizing chamber through a second conduit. The vaporizing chamber is provided with the preheater. A fuel outlet of the vaporizing chamber is in communication with an air inlet of the premix nozzle through a third conduit. An air outlet of the premix nozzle opens to the intake guiding device. An outlet of the intake guiding device communicates with the full premixed combustor. The full premixed combustor is provided with the ignition device.
Abstract:
A fuel oil provision-vaporization-pressure regulation-full premixed combustion system includes an air pump, a fuel tank, a vaporizing chamber, a preheater, a premix nozzle, an ignition device, a full premixed combustor and an intake guiding device. The air pump communicates with an air inlet of the fuel tank through a first conduit. The fuel tank is provided with a fuel inlet and a fuel outlet pipe. The fuel outlet pipe communicates with a fuel inlet of the vaporizing chamber through a second conduit. The vaporizing chamber is provided with the preheater. A fuel outlet of the vaporizing chamber is in communication with an air inlet of the premix nozzle through a third conduit. An air outlet of the premix nozzle opens to the intake guiding device. An outlet of the intake guiding device communicates with the full premixed combustor. The full premixed combustor is provided with the ignition device.
Abstract:
A combustion method of a mixture composed of air and fuel uses a precious metal fiber membrane (1), wherein additional openings (3) for generation of a flame field with higher flames (8) are provided, the roots (7) of which are kept cool for NOx reduction, among other things.
Abstract:
A porous metallic mat is provided. The porous metallic mat includes a plurality of fibers and a protective coating. The plurality of fibers is sintered into a mat configuration. The protective coating is provided on the porous metallic mat. The protective coating includes a diffusion aluminide configured to provide oxidation resistance to the porous metallic mat.
Abstract:
A superadiabatic burner has a flame holder formed from a porous medium, a fuel inlet coupled to the flame holder, a fuel outlet coupled to the flame holder, a preheater comprising an inlet and an outlet coupled to the fuel inlet, and a radiating rod coupled to the porous medium. The porous medium comprises a first porous section and a second porous section. Methods of using the burner allow preheated air or other mixtures to be provided to the fuel inlet as part of a fuel air mixture for the burner.
Abstract:
Burners for gas boilers are provided. Such burners include those having a diffuser, suitable for diffusing pre-mixed fuel gases in a combustion chamber, the diffuser having a wall provided with a plurality of diffusion openings; and a distributor, suitable for distributing the combustion gases towards the diffuser, the distributer having a wall provided with a plurality of distribution openings; wherein the diffusion openings are positioned at a diffuser portion and the distribution openings are positioned at a distributor portion, in which the diffuser portion and the distributor portion are laterally offset to each other relative to the direction of the fuel gas flow through said distribution openings and diffusion openings.
Abstract:
A burner system for a furnace. The system may have a wedged or other shaped burner box. An air-fuel mixer may be attached to a smaller end of the burner box at virtually any angle relative to a direction of a gas and air mixture leaving the larger box end. A burner head may be attached to the larger end of the box. The burner head may be sufficient for numerous heater sections of a heat exchanger. A spacer and a radiation shield may be situated between the burner head and heat exchanger. An addition of the radiation shield may reduce the operating temperature of the burner box, burner head and/or spacer. A fan may move the gas and air mixture from the mixer, through the box and the burner head. The mixture may be ignited into a flame which is moved into the heat exchanger.
Abstract:
A combustion method of a mixture composed of air and fuel uses a precious metal fiber membrane (1), wherein additional openings (3) for generation of a flame field with higher flames (8) are provided, the roots (7) of which are kept cool for NOx reduction, among other things.
Abstract:
A porous metallic mat is provided. The porous metallic mat includes a plurality of fibers and a protective coating. The plurality of fibers is sintered into a mat configuration. The protective coating is provided on the porous metallic mat. The protective coating includes a diffusion aluminide configured to provide oxidation resistance to the porous metallic mat.
Abstract:
A burner surface and creation method are provided. The burner surface includes a frame with a compact layer of unsintered metal and ceramic fibers that have been vacuum cast to a surface of the frame. The layer of unsintered metal and ceramic fibers is not greater than 0.5 inches, and is created without using substantial amounts of polymer pore forming or binding agents. The frame and compact layer additionally include a plurality of apertures that form holes through the burner surface plate. The burner surface plate may be formed by attaching a perforated screen to a fixture, inserting pins through apertures in the screen, introducing a suspension of metal and ceramic fibers into a space above the screen, vacuum casting the metal and ceramic fibers onto the screen to form a layer of metal and ceramic fibers, removing the plurality of pins from the apertures to form a corresponding set of apertures through the layer of metal and ceramic fibers, drying the layer of metal and ceramic fibers to remove moisture, applying colloidal silica to the layer of metal and ceramic fibers, and drying the burner surface.