Abstract:
An X-ray apparatus includes a rotary anode X-ray tube, a stator coil 17, and a drive-power-supply device 18. The rotary anode X-ray tube has an anode target 12 arranged in a vacuum envelope 11, a rotary body 14 coupled to the anode target 12 and configured to rotate together with the anode target 12, and a fixed shaft 15 supporting the rotary body 14, allowing the same to rotate. The stator coil 17 generates a rotating magnetic field for rotating the rotary body 14 of the rotary anode X-ray tube. The drive-power-supply device 18 controls drive power to be supplied to the stator coil 17. The apparatus is characterized by comprising: a memory unit 212 that stores a plurality of drive conditions for controlling the drive power to be supplied to the stator coil 17; and a control unit 213 that selects one drive condition from the plurality of drive conditions and causes the drive-power-supply device 18 to output drive power that matches said one drive condition.
Abstract:
An X-ray tube 1 includes spacer 8 which is cylindrical so it does not block electrons 80 directed from a grid electrode 72 toward a focusing electrode 25, and which has one end 8b fixed to the grid electrode 72 and the other end 8c abutting against the focusing electrode 25. The distance between the grid electrode 72 and focusing electrode 25 is set to a predetermined distance by the spacer 8.
Abstract:
A method for manufacturing x-ray tube parts is disclosed wherein metallic pieces are explosively bonded together to establish a high strength, stable union between them. The x-ray tube parts may then be milled from the bonded metallic pieces. The explosion bonding process creates only discrete intermetallic components in the joint region instead of a continuous, weakening intermetallic layer common in brazed joints. An explosion bond joint is characterized by a wavelike interface, thereby increasing surface area over which the components are bonded and further increasing bond integrity. Stems, rotor hubs, rotor sleeves, anodes, and other tube components may be manufactured using this method.
Abstract:
An X-ray tube 1 includes spacer 8 which is cylindrical so it does not block electrons 80 directed from a grid electrode 72 toward a focusing electrode 25, and which has one end 8b fixed to the grid electrode 72 and the other end 8c abutting against the focusing electrode 25. The distance between the grid electrode 72 and focusing electrode 25 is set to a predetermined distance by the spacer 8.
Abstract:
An x-ray tube (10) includes an anode (14) connected to a mechanical drive (36). The mechanical drive oscillates the anode in a gyrating motion relative to a body of the x-ray tube. The mechanical drive is operatively connected to the anode via a bellows assembly (16) and is capable of rocking the anode in two axes simultaneously. The preferred anode is shaped in a shperical section (28) providing a fixed focal distance between the anode and a cathode (20) regardless of relative position of the anode within the body. An electron shield (40) is disposed between the cathode and the anode and has an opening along a preferred path for electron travel. Improved heat exchange is provided by applying a heat transfer agent to an obverse side of the anode which is preferably located outside of a vacuum envelope (18) defined by the x-ray tube body, the anode, and the bellows.
Abstract:
The invention relates to a drive device for a rotary anode of an X-ray tube, including an induction motor (13) whereto an alternating voltage can be applied by means of an inverter (20), and also including a control unit (22) for controlling the inverter (20), the switching frequency of the inverter (20) being variable in time, in conformity with a frequency time characteristic, by means of the control unit (22). It is the object of the invention to provide a drive device for a rotary anode of an X-ray tube as well as a suitable control method which ensures the temperature-independent starting up of the rotary anode. The invention is characterized in that in order to start up the rotary anode to an operating speed independently of the operating temperature of the rotor (12), a fixed, selectable starting up characteristic is provided as the frequency time characteristic, that the starting-up characteristic has at least a low-temperature segment (II) and at least a high-temperature segment (I), the mean slope of the starting up characteristic in the low-temperature segment (II) being optimized for the lower operating temperature range while it is optimized for the upper operating temperature range of the rotor (12) in the high-temperature segment (I).
Abstract:
An x-ray tube has a cathode and an anode which are arranged in a vacuum housing, with an electromagnet for deflecting the electron beam traveling from the cathode to the anode. This electromagnet is formed by a C-shaped yoke with two legs that are connected to each other by a base section surrounded by a winding. Respective pole shoes with opposing pole faces are disposed at the ends of the legs. The electron beam passes between the two pole shoes as it propagates from the cathode to the anode. Each pole face has a width which does not exceed the width of its pole shoe.
Abstract:
An X-ray tube has a cathode and an anode that are arranged in a vacuum housing. For deflection of the electron beam propagating from the cathode to the anode, two electromagnets are provided, of which each having a U-shaped yoke with two arms connected with one another by a base segment, and comprises a winding surrounding the base segment. The respective end faces of the arms of the two yokes are arranged opposite one another so as to maintain an air gap. The magnetic poles positioned opposite one another have the same polarity. The electron beam proceeds through the opening limited by the two yokes.