Abstract:
A broadband ellipsometer is disclosed with an all-refractive optical system for focusing a probe beam on a sample. The ellipsometer includes a broadband light source emitting wavelengths in the UV and visible regions of the spectrum. The change in polarization state of the light reflected from the sample is arranged to evaluate characteristics of a sample. The probe beam is focused onto the sample using a composite lens system formed from materials transmissive in the UV and visible wavelengths and arranged to minimize chromatic aberrations. The spot size on the sample is preferably less than 3 mm and the aberration is such that the focal shift over the range of wavelengths is less than five percent of the mean focal length of the system.
Abstract:
The invention concerns an ellipsometer comprising a source (S) supplying at least an infrared radiation, a sample-holder (PE), a sensor (D), a first optical system mounted between the source (S) and the sample-holder (PE), so as to illuminate a sample placed on the sample-holder, under oblique view with a polarised light beam and a second optical system mounted between the sample-holder (PE) and the sensor (D) for collecting the light reflected by the sample. The ellipsometer further comprises a blocking device (F2) mounted on the reflection path in the focal plane of the focusing device (M2) of the second optical system, and adapted to block parasite rays (RP) derived from the rear surface (FAR) of the sample and to allow through useful rays (RU) derived from the front surface (FAV) of the sample towards the sensor (D), thereby enabling to obtain a resolution with respect to the sample front and rear surfaces.
Abstract:
A fiber polarimeter has one or more oblique fiber Bragg gratings disposed one behind the other in a fiber. The fiber Bragg gratings couple out portions of a light wave input to the fiber depending on its polarization. For more than one fiber Bragg grating a wave plate is disposed in the fiber between consecutive fiber Bragg gratings. The portions of the light wave from the fiber Bragg grating(s) are detected to produce measurement data that is used to calculate four Stokes parameters for determining polarization, degree of polarization and/or power of the light wave.
Abstract:
This device makes measurements of the intensity of light in four different polarizations, chosen for maximum accuracy and efficiency. In the “measuring head” the light passes through two liquid crystal waveplates and a polarizing filter before falling on a light sensitive element. Different interchangeable measuring heads, using this principle, can be made for different applications. The device has electronic control and display circuits, coordinated by a microprocessor. With a photodiode as the light sensitive element, the device is a portable stand alone polarimeter which displays the polarization parameters in whatever representation the operator chooses. With a digital camera as the light sensitive element, the device produces four scenes which can be processed digitally and uploaded as a scene seen in any arbitrary polarization. Also, the unpolarized component can be filtered out; something impossible with physical filters placed before the lens.
Abstract:
The present invention relates to a measuring module, whose measuring device comprises a measuring head equipped with a miniaturized measuring unit, and a spatially separately arranged control and evaluation unit, and wherein the measuring head is arranged so as to be able to slide linearly by means of a sliding drive.
Abstract:
A film thickness measuring apparatus capable of restricting a measurement area on the surface of a sample is provided. An incident optical system provides an irradiating polarized light to the surface of the sample. A detecting optical system receives the reflected light having an elliptical polarization and provides a reduced aperture that can restrict the light provided through a fiber optic conduit to a spectrometer and thereby eliminate aberrations and noise problems.
Abstract:
An optical measurement system is disclosed for evaluating samples with multi-layer thin film stacks. The optical measurement system includes a reference ellipsometer and one or more non-contact optical measurement devices. The reference ellipsometer is used to calibrate the other optical measurement devices. Once calibration is completed, the system can be used to analyze multi-layer thin film stacks. In particular, the reference ellipsometer provides a measurement which can be used to determine the total optical thickness of the stack. Using that information coupled with the measurements made by the other optical measurement devices, more accurate information about individual layers can be obtained.
Abstract:
In a polarimeter for analyzing a state of polarization of a light beam incident thereon, the polarimeter including first and second variable retarders configured to exhibit first and second retardance values, respectively, variable over an overall retardance range, and a detector arrangement, a method includes the steps of directing the light beam through the first and second variable retarders and sweeping a selected one of the first and second retardance values progressively and unidirectionally through at least a part of the overall retardance range to produce a plurality of retardance values. The method further includes the steps of, for the plurality of retardance values, detecting at the detector arrangement at least a spatial portion of the beam and extracting the state of polarization based on the spatial portion of the light beam detected at the detector arrangement corresponding to the plurality of retardance values.
Abstract:
Disclosed is a method for determination of bulk refractive indicies of fluids utilizing thin films thereof on a roughened surface of a two sided rigid or semi-rigid object.
Abstract:
The method uses a physical phenomenon of dispersion of the optical rotation for identification of the spectral characteristics of light Polychromatic linearly polarized radiation passes through the environment that rotates a polarization plane of its spectral components, depending on their wavelength. After a subsequent passage through the analyzing polarizer, a dependence of the light intensity S(&phgr;) on the angle &phgr;, that the analyzing polarizer forms with the polarization plane of the analyzed light, is measured. S(&phgr;) is in a mathematical relationship with the spectrum of the analyzed radiation I(&lgr;), where &lgr; is a wavelength. S(&phgr;) allows for the determination of the spectral characteristics of the analyzed radiation. In devices based on the above principle, the collimated polarized beam of the analyzed radiation passes first through the optical element that exhibits a dispersion of the optical rotation, i.e. rotator (4), then through the analyzing polarizer (5), and after a projection is detected by a proper detector (7). The detector measures S(&phgr;) as a function of the angle &phgr; of the analyzer. From S(&phgr;) the parameters of the spectrum I(&lgr;) are determined.