摘要:
The electromagnetic induction ground vehicle levitation guideway includes a beam support member, and a transverse structural slab member mounted on top of the beam support member. The structural slab member includes top and bottom structural plates mounted to the top and bottom surface of the structural slab member. The guideway includes vertical lift, lateral stability, and linear synchronous motor coils with a null flux geometry in the guideway that interact with superconducting magnets of the vehicle, allowing the vehicle to safely reach speeds of up to 350 mph with relatively low power consumption. A kinetic energy absorption structure is provided on the guideway that is capable of high speed mechanical braking of the vehicle if the superconducting magnets of the vehicle fail. A sloped top protective cover over the energy absorption means is provided to minimize adhesion and buildup of snow and ice, and extends over the sides of the guideway. Sensors are also mounted to the guideway for detecting the presence of heavy objects contacting the guideway, and for determining the location and speed of the vehicle.
摘要:
The invention relates to a magnetic unit used as a shock absorber or load leveler for a vehicle and having a plurality of groups of permanent magnets such as ceramic or ferrous magnets arranged in a side-by-side relationship, each plurality being separated from an adjacent plurality by a magnetically permeable member, such as a malleable steel member or a malleable iron or molded iron member to focus the lines of magnetic flux. Preferably, each of the permanent magnets within a group is also separated by an interleaved sheet of magnetically permeable material. Such a plurality of groups of permanent magnets are secured together to form a channel therebetween in which a supporting member is connected through fastening members to a movable levitated member which in turn is connected to the axle of the vehicle.
摘要:
The invention relates to a magnetic unit having a plurality of groups of permanent magnets such as ceramic or ferrous magnets arranged in a side-by-side relationship, each plurality being separated from an adjacent plurality by a magnetically permeable member, such as a malleable steel member or a malleable iron or molded iron member to focus the lines of magnetic flux. Preferably, each of the permanent magnets within a group is also separated by an interleaved sheet of magnetically permeable material. Such a plurality of groups of permanent magnets are secured together and to a supporting member through fastening members, and are separated from the support by a non-magnetic member, such as a non-ferrous plate. A second plurality of groups of permanent magnets are positioned adjacent to a first plurality of such groups of permanent magnets with opposite poles of the magnets facing each other so that the first and the second pluralities of such groups of magnetics attract one another to cause levitation of a vehicle such as a train. A plurality of such groups of magnetic units are so arranged relative to a support member of a train and an adjacent track member. A hydraulic unit, which may be microprocessor controlled, is used to adjust the air gap between respective pairs of such units. A third main feature of the invention relates to the use of such units to provide a main component of a linear motor for propelling the train along the track.
摘要:
The invention relates to a magnetic unit having a plurality of groups of ceramic magnets arranged in a side-by-side relationship, each plurality being separated from an adjacent plurality by a malleable steel member to focus the lines of magnetic flux. Preferably, each of the ceramic magnets within a group is also separated by an interleaved sheet of malleable steel. Such a plurality of groups of ceramic magnets are secured together and to a supporting member through fastening members, and are separated from the support by a non-magnetic member, such as a non-ferrous plate. A second plurality of groups of ceramic magnets are positioned adjacent to a first plurality of such groups of ceramic magnets with opposite poles of the magnets facing each other so that the first and the second pluralities of such groups of magnetics attract one another. Those forces of attraction are used to cause levitation of a vehicle such as a train. A plurality of such groups of magnetic units are so arranged relative to a support member of a train and an adjacent track member. A hydraulic unit, which may be microprocessor controlled, is used to adjust the air gap between respective pairs of such units. A third main feature of the invention relates to the use of such units to provide a main component of a linear motor for propelling the train along the track.
摘要:
Ground coils for a magnetically levitated railway include non-flux coils with an upper coil having a main-winding portion and an intermediate terminal forming a shunt-winding portion of the main-winding portion. A lower coil having a main-winding portion and an intermediate terminal forming a shunt-winding portion of the main-winding portion. The upper coil and the lower coils are arranged one above the other and are null-flux connected at null-flux connection points. A first lead terminal is connected to one null-flux connection point and a second lead terminal is connected to the intermediate terminal of the upper coil and the intermediate terminal of the lower coil for connecting to a power source and/or for interconnecting coils on left and right sides to provide guidance forces to the superconducting coils on the vehicle.
摘要:
A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.
摘要:
A magnetically levitated vehicle adapted for movement along a guideway, comprising a passenger compartment, at least first and second primary magnets and a plurality of confining magnets. The first and second primary magnets are secured on the vehicle to produce a magnetic field having a magnetic flux density extending outward from the primary magnets, to support the vehicle spaced from and to move the vehicle along the guideway. The plurality of confining magnets are disposed on the vehicle to confine the magnetic flux extending outward from the primary magnets and to reduce the strength of the primary magnetic field in the passenger compartment. Preferably, the confining magnets maintain the strength of the magnetic field in the passenger compartment below 5 gauss; and even more preferably, those magnets are used to maintain the strength of the primary magnetic field in the passenger compartment below 1 gauss. The confining magnets attenuate both the dc and ac fields in the passenger compartment, and also actually improve the concentration of magnetic flux available for levitation.
摘要:
In order to produce a ground coil for a magnetically levitated railway, coils each composed of a conductor coiled in a plurality of turns are arranged in a metal mold, and a synthetic resin forming reactive liquid is injected and cured in the metal mold by reaction injection molding. Furthermore, a plurality of base coils are produced each composed of a coil conductor coiled in a plurality of turns in a desired shape, laid in two tiers and connected in series so as to form unit coils. Two unit coils are connected so that the winding directions of them are opposite to each other and guidance terminals are formed, thereby forming a pair of levitation and guidance coils. Two pairs of levitation and guidance coils are arranged on a single plane in a metal mold so that the positional relationship among the coils is constant, and a synthetic resin forming reactive liquid is injected and integrally cured by reaction injection molding.
摘要:
An attraction type magnetic levitation vehicle system includes a magnetic rail laid on the side of a track and a levitation vehicle having a supporting electromagnet and a guide electromagnet each having a plurality of magnetic poles arrayed along the track. A magnetic pole surface of each of the plurality of magnetic poles is in opposing relationship to a surface of the magnetic rail, respectively. The magnetic pole surface of at least one of the supporting and guide electromagnets and the surface of the magnetic rail opposing the magnetic pole surface is in the form of a rectangular waveform having a plurality of alternating groove-and-teeth pairs arranged at a predetermined pitch. The distances from one of the plurality of magnetic poles each having the rectangular-wave-shaped magnetic pole surface of the remaining magnetic poles are staggered by less than one pitch from an integer multiple of the predetermined pitch. Exciting currents flowing in pulses through exciting coils of the plurality of magnetic poles are controlled to increase in predetermined timing and order, thereby allowing thrust to be produced in the direction of the track.
摘要:
A transportation system including a solar energy collecting monorail structure formed with a photovoltaic surface layer having a solar energy converting means for converting the collected solar energy to electrical energy. A power distribution means for distributing stored energy to transit vehicles being propelled along the monorail structure or distributing excess energy to a remote power utility source. The monorail structure includes means for propelling a transit vehicle according to magnetic principals associated with transverse flux motors. The system also includes a computer controlled, elevation compensating monorail structure extrusion machine comprising a fabrication chamber which continuously fabricates the monorail structure along a monorail construction right-of-way.