摘要:
The electromagnetic induction ground vehicle levitation guideway includes a beam support member, and a transverse structural slab member mounted on top of the beam support member. The structural slab member includes top and bottom structural plates mounted to the top and bottom surface of the structural slab member. The guideway includes vertical lift, lateral stability, and linear synchronous motor coils with a null flux geometry in the guideway that interact with superconducting magnets of the vehicle, allowing the vehicle to safely reach speeds of up to 350 mph with relatively low power consumption. A kinetic energy absorption structure is provided on the guideway that is capable of high speed mechanical braking of the vehicle if the superconducting magnets of the vehicle fail. A sloped top protective cover over the energy absorption means is provided to minimize adhesion and buildup of snow and ice, and extends over the sides of the guideway. Sensors are also mounted to the guideway for detecting the presence of heavy objects contacting the guideway, and for determining the location and speed of the vehicle.
摘要:
The electromagnetic induction suspension and horizontal switching system for a vehicle on a substantially planar guideway provides vertical lift and stability and lateral stability for a vehicle. The system provides inherent vertical lift, as well as vertical and lateral stability, including pitch, yaw and roll stability. Moreover, the suspension and stabilization system of the present invention allows electronic, horizontal switching between multiple substantially planar guideways such as a mainline guideway and a secondary guideway, which may be accomplished at speeds over 300 m.p.h. Proximal to and within a switching area at the intersection of the mainline guideway and the secondary guideway, the respective lift and stability systems for each guideway coexist and may be switched on or off, depending on the path chosen for the vehicle.
摘要:
The electromagnetic induction suspension and horizontal switching system for a vehicle on a substantially planar guideway provides vertical lift and stability and lateral stability for a vehicle. The system provides inherent vertical lift, as well as vertical and lateral stability, including pitch, yaw and roll stability. Moreover, the suspension and stabilization system of the present invention allows electronic, horizontal switching between multiple substantially planar guideways such as a mainline guideway and a secondary guideway, which may be accomplished at speeds over 300 m.p.h. Proximal to and within a switching area at the intersection of the mainline guideway and the secondary guideway, the respective lift and stability systems for each guideway coexist and may be switched on or off, depending on the path chosen for the vehicle.
摘要:
The electromagnetic induction ground vehicle levitation guideway includes a beam support member, and a transverse structural slab member mounted on top of the beam support member. The structural slab member includes top and bottom structural plates mounted to the top and bottom surface of the structural slab member. The guideway includes vertical lift, lateral stability, and linear synchronous motor coils with a null flux geometry in the guideway that interact with superconducting magnets of the vehicle, allowing the vehicle to safely reach speeds of up to 350 mph with relatively low power consumption. A kinetic energy absorption structure is provided on the guideway that is capable of high speed mechanical braking of the vehicle if the superconducting magnets of the vehicle fail. A sloped top protective cover over the energy absorption structure is provided to minimize adhesion and buildup of snow and ice, and extends over the sides of the guideway. Sensors are also mounted to the guideway for detecting the presence of heavy objects contacting the guideway, and for determining the location and speed of the vehicle.
摘要:
The electromagnetic induction suspension and horizontal switching system for a vehicle on a substantially planar guideway provides vertical lift and stability and lateral stability for a vehicle. The system provides inherent vertical lift, as well as vertical and lateral stability, including pitch, yaw and roll stability. Moreover, the suspension and stabilization system of the present invention allows electronic, horizontal switching between multiple substantially planar guideways such as a mainline guideway and a secondary guideway, which may be accomplished at speeds over 300 m.p.h. Proximal to and within a switching area at the intersection of the mainline guideway and the secondary guideway, the respective lift and stability systems for each guideway coexist and may be switched on or off, depending on the path chosen for the vehicle.
摘要:
The electromagnetic induction ground vehicle levitation guideway includes a beam support member, and a transverse structural slab member mounted on top of the beam support member. The structural slab member includes top and bottom structural plates mounted to the top and bottom surface of the structural slab member. The guideway includes vertical lift, lateral stability, and linear synchronous motor coils with a null flux geometry in the guideway that interact with superconducting magnets of the vehicle, allowing the vehicle to safely reach speeds of up to 350 mph with relatively low power consumption. A kinetic energy absorption structure is provided on the guideway that is capable of high speed mechanical braking of the vehicle if the superconducting magnets of the vehicle fail. A sloped top protective cover over the energy absorption means is provided to minimize adhesion and buildup of snow and ice, and extends over the sides of the guideway. Sensors are also mounted to the guideway for detecting the presence of heavy objects contacting the guideway, and for determining the location and speed of the vehicle.
摘要:
The electromagnetic induction suspension and horizontal switching system for a vehicle on a substantially planar guideway provides vertical lift and stability and lateral stability for a vehicle. The system provides inherent vertical lift, as well as vertical and lateral stability, including pitch, yaw and roll stability. Moreover, the suspension and stabilization system of the present invention allows electronic, horizontal switching between multiple substantially planar guideways such as a mainline guideway and a secondary guideway, which may be accomplished at speeds over 300 m.p.h. Proximal to and within a switching area at the intersection of the mainline guideway and the secondary guideway, the respective lift and stability systems for each guideway coexist and may be switched on or off, depending on the path chosen for the vehicle.
摘要:
The maglev guideway is to be constructed on railroad ties of existing rail lines so that the rail lines can be used by both maglev vehicles and conventional trains. A plurality of support bars are mounted on the rail ties, and a plurality of guideway panels mounted on the support bars. Each of the guideway panels has vertical lift and stability windings for providing vertical lift, pitch and roll stability to the maglev vehicle, and preferably also has lateral stability windings and linear synchronous motor windings. A protective cover sheet can be installed on the guideway panel, and the support bars can be pre-assembled by mounting them onto a registration grid. The guideway panel can also have a plurality of slots for accommodating threaded fasteners for mounting the guideway panel to the support bars.
摘要:
The magnetic levitation system for long distance delivery of water includes a magnetic levitation guideway and a magnetic levitation train of vehicles for carrying large amounts of water at high speed. Vehicles of the water train have a large, flexible balloon having a thick skin formed of reinforced flexible composite material for carrying water. When pressurized and filled with water, the container forms a streamlined cylinder that runs the full length of the vehicle. After delivery of the water load and depressurization, the flexible skins are depressurized and collapsed to minimize the frontal area and air drag on the vehicles. An "iron lift" guideway panel provides the magnetic lift force, with superconducting magnets on the vehicle attracted upwards to laminated steel plates attached to the guideway. Null flux aluminum loops provided for inherent stabilization. Unstable horizontal attractive forces are countered by null flux stability loop circuits making the stable restoring force from the null flux loops greater than the unstable force from the attraction to the steel plates, so that the net horizontal force is restoring, and the suspension is horizontally stable.
摘要:
The maglev guideway is to be constructed on railroad ties of existing rail lines so that the rail lines can be used by both maglev vehicles and conventional trains. A plurality of support bars are mounted on the rail ties, and a plurality of guideway panels mounted on the support bars. Each of the guideway panels has vertical lift and stability windings for providing vertical lift, pitch and roll stability to the maglev vehicle, and preferably also has lateral stability windings and linear synchronous motor windings. A protective cover sheet can be installed on the guideway panel, and the support bars can be pre-assembled by mounting them onto a registration grid. The guideway panel can also have a plurality of slots for accommodating threaded fasteners for mounting the guideway panel to the support bars.