Abstract:
A dual band LTE small cell base station communicates on both licensed bands and unlicensed bands. The small cell base station modifies the communication protocol utilized by the licensed band to enable communication over an unlicensed band. This modification involves replacing the physical (PHY) layer of the licensed band communication protocol with the PHY layer of a to-be-used protocol in an unlicensed band.
Abstract:
Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations among the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
Abstract:
A network device is configured to implement a QoS function to optimize bandwidth utilization includes a memory configured to store a high priority throughput value and a low priority bandwidth value, a network device input to communicate a data stream including a plurality of data packets to and from at least one computer system on the internal network, and a network device output to communicate the data stream including the plurality of data packets to and from at least one computer system on the external network. The network device further includes a computer processor configured to execute steps stored in non-volatile memory, the steps including identifying high priority data packets in the data stream to detect the high priority throughput value, setting the low priority bandwidth value, and periodically adjusting the low priority bandwidth value. This QoS function can work without the knowledge of actual bandwidth for any link in the networks
Abstract:
An exemplary method for managing household inventory and generating an automatically updated shopping list comprises receiving a message transmitted from a store including purchased item information from the store, organizing and storing the information in a database, obtaining captured information relating to consumed purchase items, updating the database based on the captured information, generating a shopping list on demand by a user based on updated data in the database and predetermined inventory threshold levels and wirelessly transmitting the shopping list to the user.
Abstract:
Systems, processes, and structures provide near-field transmit power measurement for MIMO wireless devices (DUT), such as for any of product development, product verification, and/or production testing. A test signal, such as comprising a pulse train signal, is provided to a MIMO device under test (DUT), wherein portions of the test signal controllably steered and sequentially transmitted from each of the device antennas, to one or more test antennas that are positioned in close proximity to the MIMO DUT. The near-field power of the received test signals is measured, to quickly and efficiently determine if one or more data streams of the MIMO DUT has a problem.
Abstract:
A receiver is provided that receives signals from a device under test (DUT) for one or more modes of operation. For each mode, the system detects beacon transmission signals from the DUT, and counts the number of beacons for a period of time. If the count is not consistent with an expected count, e.g. a stored value, the system may preferably provide an output to indicate that there is a problem with the DUT. If the count is consistent with the expected count, the system may preferably perform further testing for other modes of operation. If the count output of the DUT is consistent with expected counts over each of the operation modes, the system may provide an indication that the DUT has passed the beacon tests.
Abstract:
A method and apparatus adaptively scan communication channels to find a channel having a desired attribute such as being usable for communication with a home network in one of a plurality of communication modes. A first scan of a first set of channels is performed, and attributes are assigned to channels. If a channel having the desired attribute is not found, the attributes are used to configure a second scan of a second set of channels using a second scan mode, such that the expected amount of resources consumed in the second scan is reduced, for example by scanning channels more likely to be usable for communication first. The second scan of a second set of channels is performed, and additional attributes are assigned to channels. If a channel having the desired attribute is found during the first or second scan, the scan may terminate.
Abstract:
Disclosed are a method and apparatus for automatically detecting a problem with a router cable. This can save unskilled users troubleshooting and/or installation time, and can save vendors and/or manufacturers expenses associated with end user assistance.