Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A method of designing a gas turbine engine includes providing a fan section including a fan; driving the fan section via a gear arrangement; providing a compressor section, including both a first compressor and a second compressor; and driving the compressor section and the gear arrangement via a turbine section. The pressure ratio across the first compressor is greater than or equal to about 7.
Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A turbofan engine includes a fan, a compressor section, a combustor in fluid communication with the compressor section, a turbine section in fluid communication with the combustor, a shaft configured to be driven by the turbine section and coupled to the compressor section through a first torque load path, and a speed reduction mechanism configured to be driven by the shaft through a second torque load path separate from the first load path for rotating the fan.
Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A gas turbine engine includes a core housing that has an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flow path. The shaft supports a compressor section that is arranged axially between the inlet case flow path and the intermediate case flow path. The shaft includes a main shaft and a flex shaft having bellows. The flex shaft is secured to the main shaft at a first end and includes a second end opposite the first end. A geared architecture is coupled to the shaft, and a fan coupled to and rotationally driven by the geared architecture. The geared architecture includes a sun gear supported on the second end. A first bearing supports the shaft relative to the intermediate case and a second bearing supports the shaft relative to the inlet case. The second bearing is arranged radially outward from the flex shaft.
Abstract:
A gas turbine engine includes a plurality of rotating components housed within a compressor section and a turbine section. A tap connects to the compressor section. A heat exchanger connects downstream of the tap. A cooling compressor connects downstream of the heat exchanger, and the cooling compressor connects to deliver air to at least one of the rotating components. A core housing has an outer peripheral surface and a fan housing defines an inner peripheral surface. At least one bifurcation duct extends between the outer peripheral surface to the inner peripheral surface. The heat exchanger is disposed within the at least one bifurcation duct.
Abstract:
An auxiliary gearbox has a low speed input shaft driving a first plurality of accessories. A high speed input shaft drives a second plurality of accessories. The first plurality of accessories rotating about a first set of rotational axes, which are parallel to each other and perpendicular to a first plane. The second plurality of accessories rotating about a second set of rotational axes, which are parallel to each other and perpendicular to a second plane. The first and second planes extending in opposed directions away from a drive input axis of the high speed input shaft and the low speed input shaft. The low speed input shaft drives a variable speed transmission. A gas turbine engine is also disclosed.
Abstract:
An aircraft propulsion system includes a fan section that includes a fan shaft that is rotatable about a fan axis. The fan shaft includes a fan gear. The aircraft propulsion system also includes a boost turbine engine that includes a first output shaft that includes a first gear that is coupled to the fan gear. The boost turbine engine has a first maximum power capacity. The aircraft propulsion system further includes a cruise gas turbine engine that includes a second output shaft that includes a second gear that is coupled to the fan gear. The cruise turbine engine has a second maximum power capacity that is less than the first maximum power capacity of the boost turbine engine. The fan section produces a thrust that corresponds to power input through the fan gear from the boost turbine engine and the cruise turbine engine.
Abstract:
A gas turbine engine includes a main compressor section with a downstream most location. A turbine section has a high pressure turbine. A tap line is connected to tap air from a location upstream of the downstream most location in the main compressor section. The tapped air is connected to a heat exchanger and then to a cooling compressor. The cooling compressor compresses air downstream of the heat exchanger, and is connected to deliver air into the high pressure turbine. A bypass valve is positioned downstream of the main compressor section, and upstream of the heat exchanger. The bypass valve selectively delivers air directly to the cooling compressor without passing through the heat exchanger under certain conditions.