Abstract:
A gas turbine engine includes an engine static structure housing that includes a compressor section and a turbine section. A combustor section is arranged axially between the compressor section and the turbine section. A core nacelle encloses the engine static structure to provide a core compartment. An oil tank is arranged in the core compartment and is axially aligned with the compressor section. A heat exchanger is secured to the oil tank and arranged in the core compartment.
Abstract:
A rotor for a gas turbine engine includes a plurality of blades which extend from a rotor disk at an interface, where the interface is defined along a spoke. A spool for a gas turbine engine includes the rotor disk, the plurality of blades with the interface defined along the spoke radially inboard of a blade platform, a rotor ring axially adjacent to the rotor disk, and a plurality of core gas path seals which extend from the rotor ring. Each of the plurality of core gas path seals extends from the rotor ring at a seal interface, with the seal interface defined along a spoke and the plurality of core gas path seals being axially adjacent to the blade platform.
Abstract:
A gas turbine engine includes an engine static structure housing that includes a compressor section and a turbine section. A combustor section is arranged axially between the compressor section and the turbine section. A core nacelle encloses the engine static structure to provide a core compartment. An oil tank is arranged in the core compartment and is axially aligned with the compressor section. A heat exchanger is secured to the oil tank and arranged in the core compartment.
Abstract:
A gas turbine engine includes, among other things, a fan section including a fan rotor, a gear train defined about an engine axis of rotation, a first nacelle which at least partially surrounds a second nacelle and the fan rotor, the fan section configured to communicate airflow into the first nacelle and the second nacelle, a first turbine, and a second turbine followed by the first turbine. The first turbine is configured to drive the fan rotor through the gear train. A static structure includes a first engine mount location and a second engine mount location.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a spool along an engine axis which drives a gear train, the spool including a low stage count low pressure turbine.
Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, a low spool that includes a low pressure compressor section, the low pressure compressor section including three (3) or more stages, and a high spool including a high pressure compressor section. The high pressure compressor section includes between eight to thirteen (8-13) stages. A gear train is defined along an engine axis. The low spool is operable to drive the fan section through the gear train.
Abstract:
A gas turbine engine includes an engine static structure housing that includes a compressor section and a turbine section. A combustor section is arranged axially between the compressor section and the turbine section. A core nacelle encloses the engine static structure to provide a core compartment. An oil tank is arranged in the core compartment and is axially aligned with the compressor section. A heat exchanger is secured to the oil tank and arranged in the core compartment.
Abstract:
A gas turbine engine includes a core nacelle defined about an engine axis. A fan nacelle is mounted at least partially around the core nacelle to define a fan bypass airflow path for a fan bypass airflow. A gear train is defined along an engine axis. The gear train defines a gear reduction ratio of greater than or equal to about 2.3. A fan drive turbine along the engine axis which drives the gear train. The fan drive turbine includes three to six (3-6) stages. A fan is configured for rotation within the fan nacelle for operation at a fan pressure ratio less than about 1.45. A fan variable area nozzle is axially movable relative to said fan nacelle to vary a fan nozzle exit area and adjust a pressure ratio of the fan bypass airflow during engine operation. A high bypass gas turbine engine is also disclosed.
Abstract:
A method of designing a gas turbine engine includes providing a fan section including a fan; driving the fan section via a gear arrangement; providing a compressor section, including both a first compressor and a second compressor; and driving the compressor section and the gear arrangement via a turbine section. The pressure ratio across the first compressor is greater than or equal to about 7.
Abstract:
A turbine engine is disclosed that includes a fan case surrounding a fan rotatable about an axis. A core is supported relative to the fan case by support structure arranged downstream from the fan. The core includes a core housing having an inlet case arranged to receive airflow from the fan. A compressor case is arranged axially adjacent to the inlet case and surrounds a compressor stage having a rotor blade with a blade trailing edge. The support structure includes a support structure leading edge facing the fan and a support structure trailing edge on a side opposite the support structure leading edge. The support structure trailing edge is arranged axially forward of the blade trailing edge. In one example, a forward attachment extends from the support structure to the inlet case.