Abstract:
An energy recovery apparatus for use in a refrigeration system, comprises an intake port, a nozzle, a turbine and a discharge port. The intake port is adapted to be in fluid communication with a condenser of a refrigeration system. The nozzle comprises a converging portion, a throat region and a diverging portion. The nozzle is configured to expand refrigerant discharged from the condenser and increase velocity of the refrigerant as it passes through the nozzle. The turbine is positioned relative to the nozzle and configured to be driven by refrigerant discharged from the nozzle. The discharge port is downstream of the turbine and is configured to be in fluid communication with an evaporator of the refrigeration system.
Abstract:
Protection of a motor controller from a transient voltage and/or an over-voltage condition is described. A drive circuit includes a rectifier portion and at least one inductive device coupled to the rectifier portion. The drive circuit further includes at least one voltage clamping device coupled in parallel with the at least one inductive device, and at least one switching device configured to open as a function of a direct current (DC) link voltage value.
Abstract:
In one embodiment, a permanent magnet rotor is provided. The permanent magnet rotor includes at least one permanent magnet and a substantially cylindrical rotor core including an outer edge and an inner edge defining a central opening. The rotor core includes a radius R, at least one pole, and at least one radial aperture extending radially though the rotor core from the outer edge to a predetermined depth less than the radius. The at least one radial aperture is configured to receive the at least one permanent magnet. The rotor further includes at least one protrusion extending into the at least one radial aperture, the at least one protrusion positioned substantially along a bottom of the at least one radial aperture and configured to facilitate retention of the at least one permanent magnet within the at least one radial aperture.
Abstract:
An electric motor communication system for use with a fluid moving system is provided. The electric motor communication system includes an electric motor including a wireless communication device configured to transmit and receive wireless signals, and a processing device coupled to the wireless communication device and configured to control the electric motor based at least in part on wireless signals received at the wireless communication device. The electric motor communication system further includes at least one external device configured to communicate wirelessly with the electric motor.
Abstract:
A housing assembly for an electric motor having a rotor shaft rotatable about an axis includes a housing cover and a housing case. The housing cover defines a first bearing seat for rotatably supporting a first portion of the rotor shaft. The housing case defines a second bearing seat for rotatably supporting a second portion of the rotor shaft. At least one of the housing cover and the housing case includes a plurality of mounting lugs substantially circumferentially evenly spaced about the shaft axis for mounting the electric motor to a surface.
Abstract:
A health monitor circuit for an electric machine includes a plurality of sensors, a rectifier, a memory device, and a microprocessor. The plurality of sensors includes a current transformer configured to be electromagnetically coupled to an electrical conductor that feeds a stator winding of the electric machine. The rectifier is coupled to the current transformer and is configured to convert an AC signal generated by the current transformer to a DC signal to supply power for the health monitor circuit. The microprocessor is coupled to the memory device and the plurality of sensors. The microprocessor is configured to periodically collect a stator current measurement from the current transformer and write the stator current measurement to the memory device.
Abstract:
An electric machine assembly includes a housing defining an inner cavity, a rotatable shaft extending through the inner cavity, and at least one electrical component positioned within the cavity. The electric machine assembly also includes an internal fan coupled to the shaft and positioned within the inner cavity such that rotation of the fan provides a cooling airflow to the at least one electrical component.
Abstract:
An electric motor system is described. The electric motor system includes a drive circuit including an inverter configured to supply variable frequency current and a contactor configured to supply line frequency current. The electric motor system also includes an electric motor coupled to the drive circuit wherein the electric motor is communicatively coupled to a controller. The controller is configured to control the inverter to supply variable frequency current to the electric motor, thereby operating the electric motor at a motor speed, and determine, based upon at least one input parameter, a maximum potential motor speed the inverter can achieve. The controller is also configured to receive a command to operate the electric motor at line frequency current and control the drive circuit to transition from supplying variable frequency current to supplying line frequency current before the maximum potential motor speed the inverter can achieve is reached.
Abstract:
An electric motor system is described. The electric motor system includes a drive circuit configured to supply variable frequency current and a contactor configured to supply line frequency current, wherein the drive circuit includes a three-phase inverter and an H-bridge including two phases of the inverter. The electric motor system also includes an electric motor and a controller. The controller is configured to control the inverter to supply variable frequency current to the electric motor over a first duration and determine to control the drive circuit to transition from supplying variable frequency current to supplying line frequency current. The controller is also configured to determine a polarity of a sensed alternating current (AC) voltage, disable at least two switches of the H-bridge, and control the contactor to close, thereby preventing the contactor and the inverter from energizing the electric motor at the same time once the contactor is closed.
Abstract:
A centrifugal blower assembly including a blower housing having a scroll wall defining a blower chamber, the scroll wall extending circumferentially between a cutoff point to an end point defining a blower circumference, the blower housing further having a surface adjacent to the cutoff point; and a modular cutoff configured to attach to the surface of the blower housing, the modular cutoff having an abutting surface and a cutoff surface configured to extend the cutoff point of the blower by the cutoff surface to an extended cutoff surface. The abutting surface of the modular cutoff further includes an attachment feature configured to mate to an attachment feature of the blower housing.