Abstract:
A method of producing parts from powdered metal comprising the steps of providing a metallurgic powder comprising iron, 0-0.6 weight percent carbon, 0.5-5.0 weight percent silicon, 0.5-6.0 weight percent nickel, 0.5-1.5 weight percent molybdenum, 0-0.7 weight percent manganese, and 12-20 weight percent chromium, the weight percentages calculated based on the total weight of the powder. Secondly, the powders are compressed at a pressure of 35 to 65 tsi to provide a green compact. Then, the compact is heated in an atmosphere to a temperature of 2100° F. to 2400° F. for 20 to 90 minutes, such that the resulting microstructure of the compact is either single phase ferritic or dual phase ferritic and austenitic.
Abstract:
A nitrogen containing niobium powder is disclosed as well as electrolytic capacitors formed from the niobium powders. Methods to reduce DC leakage in a niobium anode are also disclosed.
Abstract:
An aluminum based composite material includes a matrix and a reinforcing material. The matrix mainly contains aluminum and contains magnesium. The reinforcing material is constituted of whisker and nitriding short fiber which is treated by nitriding process. The reinforcing material is dispersedly contained in the matrix. The aluminum based composite material has a high thermal resistance.
Abstract:
A bond coat composition for use in thermal barrier coatings comprises a NiAl—CoCrAlY matrix containing particles of AlN dispersed therein. The bond coat composition is prepared by croymilling NiAl and CoCrAlY in liquid nitrogen.
Abstract:
A zinc powder for use in a zinc anode, negative electrode or electrochemical cell including zinc metal or zinc alloy particles. The zinc particles have a narrow particle size distribution and a major portion of the zinc particles having a well controlled chemistry and specific shape, such as teardrop, strand teardrop, acicular or spherical thereby providing improved discharge characteristics and reduced gassing.
Abstract:
Nitrided valve metals are described, such as nitrided tantalum and nitrided niobium. The nitrided valve metals preferably have improved flow properties, higher Scott Densities, and/or improved pore size distribution which leads to improved physical properties of the valve metal and improved electrical properties once the valve metal is formed into a capacitor anode. Processes for preparing a nitrided valve metal are further described and involve nitriding the valve metal at a sufficient temperature and pressure during a heat treatment that is prior to the deoxidation step. Capacitor anodes and other products incorporating the valve metals of the present invention are further described.
Abstract:
Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.
Abstract:
A process of producing a zinc or zinc alloy powder (4) for batteries which comprises dropping molten zinc or a molten zinc alloy to form a molten metal droplets stream (1) and striking an atomizing medium jet (3) emitted from a nozzle (2) against the molten metal stream (1) at right angles to atomize the molten zinc or the molten zinc alloy, wherein two or more the nozzles are arranged in parallel to each other, the orifice of each of the nozzles has a V-shaped, U-shaped, X-shaped or arc-shaped cross-section, the atomizing medium is air or an inert gas, two or more the molten metal streams have at least two different flow rates selected from a range 0.04 to 0.25 kg/sec, and two or more the atomizing medium jets have at least two different atomizing pressures selected from a range 4 to 9 kg/cm2.
Abstract translation:一种生产用于电池的锌或锌合金粉末(4)的方法,包括滴加熔融锌或熔融锌合金以形成熔融金属液滴流(1)并且撞击从喷嘴(2)发射的雾化介质射流 )对熔融金属流(1)成直角,以雾化熔融锌或熔融锌合金,其中两个或更多个喷嘴彼此平行地布置,每个喷嘴的孔具有V形, U形,X形或弧形横截面,雾化介质是空气或惰性气体,两个或更多个熔融金属流具有选自0.04至0.25kg / sec的至少两种不同流速, 并且两个或更多个雾化介质射流具有选自4至9kg / cm 2的至少两种不同的雾化压力。
Abstract:
The invention relates to a process for the powder metallurgical production of material having improved isotropy of its mechanical properties with a rectangular or flat elliptical cross section, so-called broad-flat material, in particular raw material for producing cutting or piercing tools, in which process a powder of an alloy produced with gas, in particular pulverized with nitrogen, is placed into a capsule, compressed, and the capsule is closed, optionally after an evacuation, whereupon a heating and isostatic pressing (HIPing) of the powder capsules occur and the hot isostatically pressed slug produced in this manner is subjected to a forming by forging.
Abstract:
A nitrogen containing niobium powder is disclosed as well as electrolytic capacitors formed from the niobium powders. Methods to reduce DC leakage in a niobium anode are also disclosed.