摘要:
A method of producing parts from powdered metal comprising the steps of providing a metallurgic powder comprising iron, 0-0.6 weight percent carbon, 0.5-5.0 weight percent silicon, 0.5-6.0 weight percent nickel, 0.5-1.5 weight percent molybdenum, 0-0.7 weight percent manganese, and 12-20 weight percent chromium, the weight percentages calculated based on the total weight of the powder. Secondly, the powders are compressed at a pressure of 35 to 65 tsi to provide a green compact. Then, the compact is heated in an atmosphere to a temperature of 2100° F. to 2400° F. for 20 to 90 minutes, such that the resulting microstructure of the compact is either single phase ferritic or dual phase ferritic and austenitic.
摘要:
A powder metal part is made by compaction at room temperature or an elevated temperature followed by sintering, a secondary densification, heat treating, and optional secondary operations. The particulate materials preferably include iron, 0-2.0 wt % copper, 0.15-0.9 wt % carbon, 0.5-2.0 wt % molybdenum, 0.5-4.5 wt % nickel, 0-4.0 wt % chromium, and 0-1.5 wt % silicon. At least one secondary densification is applied to the part after compaction and pre-sinter/sinters steps to achieve medium to high density. The secondary densification is part of a double-press double-sinter (DPDS) or is a mechanical working depending on the application requirements. The powder metal is heat treated by austempering or marquenching followed by tempering. A unique composite microstructure is achieved from austempering by controlling the powder chemistry and the holding time at an elevated temperature. The combination of a secondary densification and austempering or marquenching produces a high performance powder metal part for demanding applications.
摘要:
A device to compact parts out of powder material including a top die and a bottom die movable with respect to each other from an open position to a closed position, at least one punch associated with each of said dies for relative movement between the die and associated punch, said bottom die and bottom punch movable to positions defining a cavity substantially within said top die for receiving powder therein, said bottom punch and said top and bottom dies being relatively movable to draw powder down into a portion of said cavity adjacent the bottom die that is formed due to said relative movement, said top and bottom punches being movable toward each other to compact the powder and form the part, said top and bottom dies being separable to eject the part. Relative movement of the top and bottom die and bottom punch may take place during filling of the cavity with powder. Alternatively, relative movement may take place after the completion of filling the cavity adjacent the top die with sufficient powder to fill the part.
摘要:
A method of producing parts from powdered metal having a first step of providing a powder, which is compressed at a pressure of 25 to 65 tsi to provide a green compact. The compact is then sintered at 2000° F. to 2400° F. for 20 to 60 minutes and cooled. After the compact has been cooled, the density of the compact is increased to greater than 7.4 g/cc. The compact is austenitized in an atmosphere of gas containing propane and a carbon potential of 0.8%. In one embodiment, the gas also contains ammonia. The compact is heated in the atmosphere at a temperature of 1600° F. for 40 minutes. Immediately following the heating, the compact is quenched in oil a temperature between 120° F. and 150° F. for 10 to 15 minutes. Lastly the compact is tempered at a temperature between 300° F. and 1000° F. for 30 to 90 minutes.
摘要:
A device to compact parts out of powder material including a top die and a bottom die movable with respect to each other from an open position to a closed position, at least one punch associated with each of said dies for relative movement between the die and associated punch, said bottom die and bottom punch movable to positions defining a cavity substantially within said top die for receiving powder therein, said bottom punch and said top and bottom dies being relatively movable to draw powder down into a portion of said cavity adjacent the bottom die that is formed due to said relative movement, said top and bottom punches being movable toward each other to compact the powder and form the part, said top and bottom dies being separable to eject the part. Relative movement of the top and bottom die and bottom punch may take place during filling of the cavity with powder. Alternatively, relative movement may take place after the completion of filling the cavity adjacent the top die with sufficient powder to fill the part.
摘要:
A method of producing parts from powdered metals is disclosed, comprising the following steps. A metallurgical powder is provided, consisting of iron, 0.3-1.0 weight percent carbon, 0-4 weight percent chromium, 0-3 weight percent copper, 0.5-1.5 weight percent molybdenum, 0.5-4.5 weight percent nickel, 0-1.0 weight percent manganese, and 0-1.5 weight percent silicon. Metal powders are made by atomization and mixing. The powder metal parts are made by compacting, pre-sintering, profile/form grinding, sinter furnace hardening, and secondary operations. Profile/form grinding generates profiles, which can not be formed by compaction tooling, such as undercut. The specific pre-sinter cycle makes parts strong enough for profile grinding with prolonged tool life. Powder metal parts made by this invention are also disclosed.
摘要:
A method of producing parts from powdered metal comprising the steps of providing a metallurgic powder, compressing the powder at a pressure of 25 to 65 tsi to provide a green compact with a density if 6.4 g/cc to 7.4 g/cc. The compact is then high temperature sintered at a temperature of 2100° F. to 2400° F. for 20 to 60 minutes or regularly sintered at a temperature of 1650° F. to 2400° F. for 20 to 80 minutes, held between 1000° F. to 1800° F. for 5 to 60 minutes, and then cooled to room temperature. Then, the compact is selectively densified to greater than 7.6 g/cc. The compact is sinter hardened to obtain a mainly Martensite microstructure. The compact can be directly high temperature sinter hardened if selective densification is not necessary. Material made by this method is also disclosed.
摘要:
A wireless device receives configuration parameters of one or more configured grants of a cell. The wireless device determines a first size of an uplink control information based on a second size of one or more code block groups of a transport block. The wireless device transmits, via a radio resource of the one or more configured grants, the one or more code block groups of the transport block the uplink control information with the first size.
摘要:
In some embodiments, a wireless device receives a plurality of downlink control information (DCIs) via a plurality of resource block (RB) sets of a bandwidth part of a cell. The plurality of DCIs indicate downlink radio resources. The wireless device receives a transport block via the downlink radio resources. Based on RB set indexes of the plurality of RB sets, the wireless device determines a DCI from the plurality of DCIs. Then, the wireless device transmits feedback information, for the transport block, via an uplink control channel resource determined based on the DCI.
摘要:
Described are embodiments for selecting a preamble for a random access procedure. In an embodiment, a wireless device receives one or more configuration parameters of physical random access channel (PRACH) occasions for the random access procedure. One or more PRACH occasions of the PRACH occasions correspond to a respective RS of a plurality of RSs. The wireless device determines a RS, from the plurality of RSs, based on a reference signal received power (RSRP) value of the RS, and a transmission power reduction value associated with the RS. The wireless device determines a PRACH occasion, associated with the RS, from the PRACH occasions. Then, the wireless device transmits, via the PRACH occasion, a preamble for the random access procedure.