Abstract:
A driving circuit of a backlight module is provided. The driving circuit has a dimming unit used for transmitting signals, wherein the dimming unit can adjust a current flowing through a light-emitting diode (LED) according a pulse width modulation signal and an enable signal, so as to adjust a light-emitting intensity of the LED. In the present invention, fewer devices are used to implement the dimming unit, and a transmission gate is replaced by a N-type transistor and a P-type transistor, such that a chip area and a circuit cost of the driving circuit are reduced.
Abstract:
A capacitance sensing circuit for a touch panel includes an analog capacitance-detecting circuit, a PWM-to-digital circuit and a self-calibration circuit. The analog capacitance-detecting circuit detects the capacitance of the touch panel based on a charging current, and converts the detected capacitance into a PWM control signal. The PWM-to-digital circuit converts the PWM control signal into a sensing count value based on a clock signal. The self-calibration circuit adjusts the value of the charging current or the frequency of the clock signal according to the difference between the range of the sensing count value and a predetermined detecting range. The predetermined detecting range can thus be adjusted for matching the range of the sensing count value.
Abstract:
In a capacitance sensing analog circuit of a touch panel sensing circuit, by raising a magnitude of a current flowing through a sensing capacitor to form an amplified sensing capacitance, while sensing the amplified sensing capacitance with the aid of pulse width modulation signals, higher resolution of the original sensing capacitance may thus be achieved. Besides, by using a self-calibrating capacitance sensing circuit on the touch panel sensing circuit, linear errors and DC errors of an output signal of the capacitance sensing analog circuit may be filtered off, and thereby resolution of a capacitance amplifying ratio may be effectively raised so as to relieve errors within the capacitance amplifying ratio caused by noises.
Abstract:
A display method for a color sequential display is provided. The method includes the following steps. During a first frame period, a first color backlight is provided, and a plurality of scan lines is sequentially enabled according to a first scanning order. During a second frame period, a second color backlight is provided, and the scan lines are sequentially enabled according to a second scanning order. The first frame period and the second frame period are two neighboring frame periods, and the first scanning order and the second scanning order are reversed to each other.
Abstract:
A capacitive touch display panel includes a first substrate, a second substrate, an opaque pattern, a plurality of transparent conductive sensor pads, and a plurality of non-transparent conductive patterns. The first substrate and the second substrate are disposed oppositely. The transparent conductive sensor pads are disposed on the second substrate. The non-transparent conductive patterns are disposed on the second substrate, and the non-transparent conductive patterns and the transparent conductive sensor pads are electrically connected and overlapping. The conductivity of the non-transparent conductive patterns is higher than that of the transparent conductive sensor pads, and the non-transparent conductive patterns are corresponding to the opaque pattern.
Abstract:
For further reducing power consumption of a color sequential display, a frame rate or a field rate is reduced according to conditions, which include whether a received frame is dynamic or static and whether a backlight mode is activated, for reducing power consumption. Besides, images maybe outputted in forms of color images or of grey levels selectively so as to reduce an amount of processed data and related data transmission.
Abstract:
A three-dimensional display apparatus, including a backlight module, two panels, and a synchronization device, is provided. The backlight module has a light emitting side and sequentially emits a plurality of color light. Both panels are disposed at the light emitting side, and the first panel is disposed between the backlight module and the second panel. The first panel includes a first polarizer and a first liquid crystal substrate, and the first polarizer is disposed between the backlight module and the first liquid crystal substrate. The second panel includes a second liquid crystal substrate and a second polarizer, and the second liquid crystal substrate is disposed between the second polarizer and the first panel. The synchronization device is electrically connected to the backlight module and the two liquid crystal substrates. During a frame time, the backlight module and the two liquid crystal substrates are synchronously driven by the synchronization device.
Abstract:
A backlight module control system includes a plurality of backlight sub-modules, a control signals output unit, a voltage converter and a plurality of current control units. The control signals output circuit is for providing a voltage control signal, a current control signal and a plurality of PWM signals; the voltage converter is coupled to the control signals output circuit and the backlight sub-modules, and is for outputting an output voltage to the backlight sub-modules according to the voltage control signal; the current control units are coupled to the backlight sub-modules, respectively, and each current control unit is for determining a current of its corresponding backlight sub-module according to the current control signal, and each current control unit is further utilized for determining whether its corresponding backlight sub-module is enabled or not according to its corresponding PWM signal. In addition, only one backlight module is enabled at a same time.
Abstract:
A sensor structure of a touch panel and a method of determining a touch signal generated by the same are disclosed. The sensor structure includes a plurality of sensor lines disposed on a surface of a substrate, and a control circuit electrically connected to the sensor lines. Each of the sensor lines has a plurality of conductive pads and a conductive line electrically connected the conductive pads. The control circuit receives a touch signal from one of the sensor lines. The touch signal is resulting from a touch capacitance generated between a touch and one of the conductive pads of the sensor line. The control circuit calculates the position of the touch based on the touch capacitance. In addition, the touch capacitance generated by a conductive pad close to the control circuit is larger than the touch capacitance generated by another conductive pad further away from the control circuit.
Abstract:
A power supply device is disclosed in the present invention, which includes a DC-DC boost converter and a charge recycling circuit. The DC-DC boost converter is utilized for boosting an input voltage to generate an output voltage, and adjusting a voltage level of the output voltage according to a level switching signal. The charge recycling circuit is electrically connected to the DC-DC boost converter, and is utilized for generating a current path according to the level switching signal to recycle redundant charges from the DC-DC boost converter when the output voltage is switched from high to low and to return stored charges back to the DC-DC boost converter when the output voltage is switched from low to high, so as to accelerate voltage switching of the output voltage and to reduce power consumption of the DC-DC boost converter.