Abstract:
A light-emitting device comprising a light-emitting unit including a plurality of first connecting pads, a base substrate including a plurality of second connecting pads, and a plurality of conductive bumps that connect the first connecting pads of the light-emitting unit to the second connecting pads of the base substrate. In the manufacturing process, a reflow process is performed to bond the conductive bumps to the first and second connecting pads. The light-emitting unit is configured to emit a first light radiation upon the application of an electric current flow, and the base substrate is configured to emit a second light radiation when stimulated by the first light radiation.
Abstract:
A method for designing an optimal bi-axial type of magnetic gear system that uses magnetic coupling for transmitting torque in order to be free from the defects caused by using a conventional mechanical gear system. A non-coaxial rather than a conventional coaxial type of magnetic gear design is considered for this invention. For the non-coaxial magnetic gear system, the size of torque will depend on the number of poles magnetized out of the strong magnetic material around the magnetic gear. Therefore, the optimum number of magnetized poles must be carefully selected for a set of specified conditions such that the largest torque can be obtained. An optimal magnetic gear system can be produced by the method in this invention.