Abstract:
A data recording device. A random data generator randomly generates substitute data. A recording data generator receives original data and a recording address from a host, receives the substitute data, compares the recording address with a reference address, and outputs the substitute data according to the comparison result. An encoder generates a first data block according to the substitute data. A modulator modulates the first data block. An optical pickup records the modulated first data block on the optical recording medium according to the recording address.
Abstract:
A method for tuning a plurality of write strategy parameters of an optical storage device includes detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device, performing calculations corresponding to a plurality of data set types and generating a plurality of data-to-clock edge deviations respectively corresponding to the data set types, and utilizing the data-to-clock edge deviations for tuning the write strategy parameters corresponding to the data set types respectively.
Abstract:
A system, for tuning a plurality of write strategy parameters of an optical storage device, includes: a run-length limited (RLL) meter for detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device; and a calculation module coupled to the RLL meter for performing calculations according to the lengths to generate a plurality of calculation results; wherein the write strategy parameters are tuned according to the calculation results.
Abstract:
A method for generating length deviation statistics utilized for controlling operation of an optical storage device, includes: detecting a plurality of pattern lengths, each pattern length corresponding to data on an optical storage medium accessed by the optical storage device; and performing calculations according to the pattern lengths to generate length deviation statistics associated with the pattern lengths.
Abstract:
A structure of a USB connector comprising an isolation chassis and an electric module is provided. The circuit board has a plurality of interconnection-terminals and a plurality of adaptor-terminals, wherein the power wave-filter module is positioned in a positive and negative power line of the circuit board and electrically connects to a first terminal and a fourth terminal of the interconnection-terminals and the signal wave-filter module is positioned in a signal line of the circuit board and electrically connects to a second terminal and a third terminal of the interconnection-terminals so as to cancel noise generated during signal transmission.
Abstract:
When restoring signals from an optical recording medium, one usually obtains nonlinearly distorted signals. The equalizer disclosed in the prior art can only process linear signals. A new structure that can process nonlinearly distorted signals is disclosed, which including an A/D converter for sampling restoring signals. The restored signals are processed by an adaptive linear equalizer to extract the errors. The errors are then fed into a nonlinear equalizer for correcting the nonlinear distortion.
Abstract:
An error correction method for correcting an first ECC code from a storage unit, comprising: (a) marking at least a first part of the first ECC code according to a correction result generated by correcting error of the first ECC code, to generate a first error correction reference information; and (b) marking at least a second part of the first ECC code according to the first error correction reference information to generate a second error correction reference information.
Abstract:
A decoding circuit includes: a level adjuster with pattern dependency arranged to generate a plurality of Viterbi target levels with pattern dependency; and a Viterbi decoder arranged to perform Viterbi decoding according to the Viterbi target levels with pattern dependency. A decoding circuit includes a Viterbi decoder arranged to perform Viterbi decoding, and the Viterbi decoder includes a branch metric generator arranged to generate a plurality of branch metrics with pattern dependency according to an input of the Viterbi decoder and a plurality of Viterbi target levels with pattern dependency. In particular, the branch metric generator includes: a plurality of branch metric generation paths arranged to generate a plurality of intermediate values according to the input of the Viterbi decoder and the Viterbi target levels with pattern dependency, respectively; and a selection unit for selecting a portion of the intermediate values as the branch metrics with pattern dependency.
Abstract:
A method for improving readability of an optical disc includes: changing a first control parameter of an optical storage apparatus that accesses the optical disc and obtaining a plurality of associated values of an index corresponding to the readability of the optical disc for respective changed/unchanged values of the first control parameter; setting the first control parameter to be an optimal value out of the changed/unchanged values of the first control parameter according to the index; changing a second control parameter with the first parameter set to be the optimal value to obtaining a plurality of associated values of the index for respective changed/unchanged values of the second control parameter; and setting the second control parameter to be an optimal value according to the index. The control parameters having their individual optimal values are utilized for further control during decoding. In addition, an associated optical storage apparatus is further provided.
Abstract:
The invention provides an optical disk drive. In one embodiment, the optical disk drive comprises a feeding device, a power driver, and a controller. The feeding device comprises a spherical aberration (SA) lens and a stepping motor, wherein the SA lens corrects spherical aberration of a light beam emitted by a pickup head, and the stepping motor moves the SA lens according to a plurality of control signals. The power driver generates the control signals to drive the stepping motor to move the SA lens. The controller directs the power driver to drive the stepping motor to move the SA lens with only stable steps when the SA lens is required to move, so that the stepping motor is in a stable state without inducing step errors after the stepping motor rotates with the stable steps.