Abstract:
A system and associated method for controlling access to features of a device are provided. The system includes a feature access component that maintains an access control register configured to store an access control parameter indicating whether a user has access to a feature of the device. Responsive to receiving a request to modify the access control register to enable or disable access to the feature, an access authentication parameter is set to an authentication key of the request and an access parameter is set to a value of the request (e.g., 1 “Enable”). The access authentication parameter and access parameter are evaluated utilizing an authentication algorithm. Responsive to successfully authenticating the request, the access control register is modified based upon the value of the access parameter, such as to indicate that the user is now authorized to read and/or modify a parameter and/or invoke a service to execute.
Abstract:
A metering system that may find use to generate values for measured parameters of materials. The metering system may be configured with a metrology device configured to generate a first signal in digital format to convey information about material in a conduit. The metering system may also include an accessory coupled with the metrology device, the accessory configured to use the information of the first signal to generate a second signal, the second signal conveying information that defines a measured parameter for the material. In one implementation, the accessory comprises executable instructions that configure the accessory to exchange information with the metrology device so as to verify a regulatory status for the metrology device.
Abstract:
Embodiments of systems and methods that can filter acoustic energy from sources remote from the valve. These embodiments utilize signals from sensors that manifest acoustic energy from various locations on and/or about the valves. In one embodiment, the system includes sensors at locations proximate the valve and locations spaced apart from the valve. The system can further process the signals from these locations and, in one example, combines samples of data to form an energy signature of the valve that is effectively free of noise that emanates from upstream and/or downstream of the valve.
Abstract:
A method for correcting calibration of a closure member on a valve assembly. The method can include comparing a calculated value to an expected value, each relating to a position of a closure member of the valve assembly relative to a seat of the valve assembly, the calculated value being calculated using a calibration variable and an input value corresponding to a measured position of the closure member. The method can also include identifying a deviation between the calculated value and the expected value. The method can further include changing the calibration variable from a first value to a second value in response to the deviation, the second value equating the calculated value at the input value with the expected value for the position.
Abstract:
Embodiments of a system that can detect leaks that occur in seals, and in one example, to seals found in a valve. In one embodiment, the system utilizes sensors that measure fluid properties of a sample volume proximate to the seal. The system can compare data from these measurements with data from a sample of a reference fluid (e.g., ambient air) to indicate the presence of working fluid in the sample volume. This result may indicate problems with the seal, e.g., degradation of the seal that is meant to prohibit the working fluid from migrating out of the valve.
Abstract:
An attenuating device that is configured to replace motion converters in conventional control valve assemblies. The attenuating device can generate an output displacement in response to a position of a plug relative to a seat in the valve assembly. In one embodiment, the attenuating device comprises a spring assembly with a pair of spring members, disposed in series, and configured to assume a deflection that reduces the displacement of the plug to a smaller displacement that is useful to position a target member of a sensor. This embodiment, however, forgoes the mechanisms of conventional devices in lieu of components that are amenable to compact design. In this way, the attenuating device can substantially fit within the existing structure of the valve assembly, and, in one construction, the attenuating device is disposed in the actuator of the valve assembly.
Abstract:
A flow restrictor for use on a pilot operated relief valve (PORV) assembly with a pilot valve that regulates operation of a main valve to reduce pressure in a system or vessel. In one embodiment, the flow restrictor is configured with a plurality of flow modifying regions, namely, a first region and a second region that is spaced apart from the first region. These regions are configured to generate flow at the outlet of the flow restrictor that induces operation of the pilot valve that is favorable for operation of the main valve. In one example, the first region and the second region define, respectively, a first flow area and a second flow area for the flow pathway, wherein each are configured to assign a ratio of the second flow area to the first flow area with a value of less than 10.
Abstract:
Embodiments of systems and methods that can facilitate data collection for valve diagnostics. The systems can include a valve assembly with a valve and a sampling device that is configured to access a repository with a first buffer and a second buffer. During operation, the valve assembly is configured to read data representing operating variables for the valve into the first buffer. The valve assembly is also configure to determine a quality measure for a first sample set of data from the first buffer, the quality measure indicating the usefulness of the first sample set of data for predicting performance of the valve relative to a second sample set of data from the second buffer. In one embodiment, the valve assembly is further configured to read data from the first buffer into the second buffer in response to the quality measure indicating that the first sample set of data is relatively more useful than the second sample set of data.
Abstract:
This disclosure describes new construction for rotary elements that find use in rotary displacement devices, e.g., positive displacement pumps and meters. The proposed construction may incorporate fibers, e.g., carbon fibers, disposed in a resin matrix. This construction can reduce the need to perform secondary processes that are necessary to utilize many rotary elements of conventional design. Moreover, examples of the rotary elements can improve operation of the displacement devices, e.g., by reducing resonance and allowing the displacement device to operate at increased speed.