Abstract:
The present invention discloses a non-quarter wave multilayer structure having a plurality of alternating low index of refraction material stacks and high index of refraction material stacks. The plurality of alternating stacks can reflect electromagnetic radiation in the ultraviolet region and a narrow band of electromagnetic radiation in the visible region. The non-quarter wave multilayer structure, i.e. nLdL≠nHdH≠λ0/4, can be expressed as [A 0.5 qH pL(qH pL)N 0.5 qH G], where q and p are multipliers to the quarter-wave thicknesses of high and low refractive index material, respectively, H is the quarter-wave thickness of the high refracting index material; L is the quarter-wave thickness of the low refracting index material; N represents the total number of layers between bounding half layers of high index of refraction material (0.5 qH); G represents a substrate and A represents air.
Abstract:
Processes for the liberation of oxygen and hydrogen from water are provided allowing for mass scale production using abundant sources of catalyst materials. A metal oxide based anode is formed by the simple oxidation of metal in air by heating the metal for a specified time period. The resultant anode is then contacted with water and subjected to a voltage from an external source or driven by electromagnetic energy to produce oxygen at the surface of the anode by oxidation of water. These processes provide efficient and stable oxygen or hydrogen production.
Abstract:
In one embodiment, a semi-transparent reflector may include a multilayered photonic structure. The multilayered photonic structure includes a plurality of coating layers of high index dielectric material and a plurality of coating layers of low index dielectric material. The plurality of coating layers of high index dielectric material and the plurality of coating layers of low index dielectric material of the multilayered photonic structure are arranged in an [LH . . . (LH)N . . . L] structure. L is one of the plurality of coating layers of low index dielectric material. H is one of the plurality of coating layers of high index dielectric material. N is a positive integer. The multilayered photonic structure has substantially constant reflectance values for wavelengths of electromagnetic radiation in a visible spectrum over a range of angles of incidence of the electromagnetic radiation.
Abstract:
An omnidirectional structural color (OSC) having a non-periodic layered structure. The OSC can include a multilayer stack that has an outer surface and at least two layers. The at least two layers can include at least one first index of refraction material layer A1 and at least one second index of refraction material layer B1. The at least A1 and B1 can be alternately stacked on top of each other with each layer having a predefined thickness dA1 and dB1, respectively. The dA1 is not generally equal to the dB1 such that the multilayer stack has a non-periodic layered structure.
Abstract:
A paint composition is disclosed, the paint having a binder and an omnidirectional structural color pigment dispersed throughout the binder. The omnidirectional structural color pigment can be made from a plurality of flakes that have a multilayer structure, the pigment and the paint having a reflection band of less than 200 nanometers when viewed from angles between 0 to 45 degrees.
Abstract:
Disclosed is a multilayer structure wherein a first layer of a first material having an outer surface and a refracted index between 2 and 4 extends across an outer surface of a second layer having a refractive index between 1 and 3. The multilayer stack has a reflective band of less than 200 nanometers when viewed from angles between 0° and 80° and can be used to reflect a narrow range of electromagnetic radiation in the ultraviolet, visible and infrared spectrum ranges. In some instances, the reflection band of the multilayer structure is less than 100 nanometers. In addition, the multilayer structure can have a quantity defined as a range to mid-range ratio percentage of less than 2%.
Abstract:
The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.
Abstract:
The invention describes an approach to sublingual administration of drugs where in pharmacologically inactive adjuvant have been used to transport the drugs rapidly to the tissue receptor sites to create a faster and a much greater response compared to oral administration or sublingual administration of the same drugs without the use of adjuvant. These compounds enhance the passage of the drug through the buccal mucosa and transfer to the active site. Here we have enhanced the activity of glipizide and alprazzolam by their use. In the first case the activity of glipizide is enhanced 32 times and in the 2nd case the activity of alprazolam by 2 times approximately. An advantage of enhancing the activity glipizide is that it obliterates the use of metformin thereby making the product much safer for use and effective in situations of diabetic coma and lactic acidosis where mortality rates are around 60%.
Abstract:
An omnidirectional reflector that reflects a band of electromagnetic radiation of less than 100 nanometers when viewed from angles between 0 and 45 degrees is provided. The omnidirectional reflector includes a multilayer stack having a plurality of layers of high index of refraction material and a plurality of layers of low index of refraction material. In addition, the plurality of high index of refraction material layers and low index of refraction material layers are alternately stacked on top of or across each other and provide a non-periodic layered structure.
Abstract:
A multilayer photonic structure may include a plurality of coating layers of high index dielectric material of index of refraction nH and a plurality of coating layers of low index dielectric material of index of refraction nL alternately arranged with a first coating layer and a last coating layer of the multi-layer photonic structure comprise low index material. An index-thickness of each coating layer of the multilayer photonic structure is different than every other coating layer of the multilayer photonic structure. The multilayer photonic structure has a first high reflectivity bandwidth, a second high reflectivity bandwidth and a low reflectivity bandwidth wherein the low reflectivity bandwidth is positioned between the first high reflectivity bandwidth and the second high reflectivity bandwidth.